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The Health Effects Institute’s Energy Research program (HEI Energy) was formed to identify and 
conduct high-priority research on potential population exposures and health effects from the development 
of oil and natural gas in the United States. Since 2022, HEI Energy has supported population-level exposure 
research in multiple oil and gas regions. This research followed an extensive planning process that included 
preparing reviews of the scientific literature, hosting multisector workshops to learn about research 
priorities, and developing an online curated database and spatial bibliography to advance both public and 
scientific understanding. The research scope of HEI Energy is expanding beyond oil and gas to other forms 
of energy development, with an overarching goal of providing impartial knowledge about the benefits and 
drawbacks associated with various technologies. 

The scientific review and research provided by HEI Energy contribute high-quality and credible science 
to the public debate about unconventional oil and natural gas development and provide needed support 
for decisions about how best to protect public health. To achieve this goal, HEI Energy has put into place 
a governance structure that mirrors the one successfully employed for nearly 40 years by its parent 
organization, the Health Effects Institute (HEI), with several critical features:

•	 Balanced funding from the US Environmental Protection Agency under a contract that funds 
HEI Energy exclusively and from the oil and natural gas industry, with other public and private 
organizations periodically providing support

•	 An independent Board of Directors consisting of leaders in science and policy who are committed 
to fostering the public–private partnership that is central to the organization

•	 A research program governed independently by individuals having no direct ties to or interests in 
sponsor organizations

•	 An HEI Energy Research Committee, consisting of internationally recognized experts in one 
or more subject areas relevant to the Committee’s work, that has demonstrated the ability to 
conduct and review scientific research impartially and has been vetted to avoid conflicts of interest

•	 Research that undergoes rigorous peer review by HEI Energy’s Review Committee, which is not 
involved in the selection and oversight of HEI Energy studies

•	 Staff and committees that participate in open and extensive stakeholder engagement before, during, 
and after research and communicate all results in the context of other relevant research.

In addition, HEI Energy publicly shares all literature reviews and original research that it funds, along with 
summaries written for a general audience. Without advocating policy positions, it provides impartial science 
targeted to make better-informed decisions.

HEI Energy is funded separately from the Health Effects Institute’s other research programs  
(www.healtheffects.org), with financial support from the US Environmental Protection Agency, the oil and gas 
industry, and private foundations.

A B O U T  H E I  E N E R G Y

http://www.healtheffects.org/
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E X ECUT I V E  S UMMARY

The health of people living in any community can be affected by a range of environmental, 
social, and economic factors. The purpose of this roadmap is to build on and contribute to ongoing 
efforts to advance the practice of assessing cumulative exposures and their impacts in the United 
States using a tool referred to as cumulative impact assessment. Cumulative impact assessments 
have and continue to occur in the context of national, state, and local regulatory decisions, but they 
can also be used for nonregulatory, educational, and research purposes.

To date, cumulative impact assessments fall short of addressing the totality of impacts in a 
truly cumulative way, at least in part because of the complexity of such assessments. Nonetheless, 
cumulative impact assessments, designed such that they can be completed in a useful time frame, 
can help to reframe scientific and policy discussions so that they encompass the full spectrum of 
factors that can affect human health, and in so doing, position decision-makers to capitalize on 
beneficial impacts while avoiding adverse impacts. This roadmap and accompanying checklist aim to 
facilitate taking the first steps toward realizing this goal. They provide a set of considerations that 
can be used by local and state decision-makers, nonregulatory actors such as industry and planning 
agencies, and other scientific and technical researchers to inform a cumulative impact assessment, 
alongside example contexts for how these considerations might be applied in real-world settings.
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I. INTRODUCTION TO THE ROADMAP

A. PURPOSE OF THE ROADMAP

The health of people living in any community can be 
affected by an array of environmental, social, and economic fac-
tors. Numerous studies throughout the scientific literature doc-
ument how exposures associated with one or even a few factors 
might affect human health. The same is not true for under-
standing how the integrated (or cumulative) exposure to all fac-
tors can affect health. The purpose of this roadmap and accom-
panying checklist (Appendix B) is to build on and contribute 
to ongoing efforts to advance the practice of assessing cumu-
lative exposures and their impacts in the United States (using 
a tool referred to as cumulative impact assessment,1 hereafter, 
CI assessment) by providing a set of considerations that can 
inform a CI assessment process, alongside example contexts 
for how these considerations might be applied in real-world 
communities. CI assessment processes are highly context- 
specific. As such, this roadmap is not intended to provide pre-
scriptive guidance on the implementation of a CI assessment.

To date, CI assessments fall short of addressing the totality 
of impacts in a truly cumulative way, at least in part because 
of their complexity. Nonetheless, CI assessments designed 
such that they can be completed in a useful time frame can 
help to reframe scientific and policy discussions so that they 
encompass the full spectrum of factors that can affect human 
health, and in so doing, position decision-makers to capitalize 
on beneficial impacts while avoiding adverse ones. Leveraging 
what is already known from Health Effects Institute Energy 
(HEI Energy) through its currently funded research and what 
has been learned about the various types of impacts on com-
munities over the past two decades, this document illustrates 
CI assessment concepts and potential methods using the con-
text of any community affected by unconventional oil and gas 
development (UOGD)2 in the United States. UOGD is used as 

the example context for the application of this set of consid-
erations because the literature is relatively large on potential 
exposures and impacts that describe environmental, social, 
and economic factors. However, the considerations are meant 
to be broadly applicable to other environmental contexts in 
addition to those involving UOGD, such as the development of 
new infrastructure in a locality or other energy-related devel-
opments, such as power plants.

B. INTENDED USERS OF THE ROADMAP

The roadmap is intended for use by anyone interested in 
using CI assessment to understand and assess how cumulative 
exposures to environmental, social, and economic factors can 
affect human health. The roadmap consists of a flexible set of 
considerations that can be adapted or applied in educational, 
research, regulatory, and other decision contexts, although they 
are primarily intended for application in the United States con-
text. As such, they are likely to be most useful to local and state 
decision-makers, nonregulatory actors such as industry and 
planning agencies, and other scientific or technical researchers 
in the United States. 

C. CUMULATIVE IMPACT ASSESSMENT PRACTICE TO 
DATE

Several approaches are available to assess cumulative expo-
sures, including cumulative risk assessment, CI assessment, 
and cumulative effects assessment.3 CI assessment and cumu-
lative effects assessment are largely described interchangeably 
and have often been conducted within the framework of envi-
ronmental impact assessment. Although a detailed review of 
these approaches is beyond the scope of this document, addi-
tional resources include Blakley and Franks 2021, Callahan 
and Sexton 2007, Gunn and Noble 2009, IAIA 1999, Rish et al. 
2024, and US EPA 2003.

Assessments intended to assess cumulative impacts have 
primarily been conducted and initiated at local to regional 
scales under regulatory contexts — for example, for the National 
Environmental Policy Act (NEPA) and similar state rules. How-
ever, no widely accepted model exists for conducting CI assess-
ments in other decision contexts (Rish et al. 2024; Verweil and 
Rish 2025). Several frameworks for CI assessment (e.g., US 
EPA 2024) and comprehensive reviews of frameworks and 
methods for CI assessment (e.g., Rish et al. 2024, Verweil and 

Although this Special Report was produced with partial funding by the 
United States Environmental Protection Agency under Contract No. 
68HERC19D0010 to the Health Effects Institute, it has not been subjected to 
the Agency’s peer and administrative review and may not reflect the views 
of the Agency; thus, no official endorsement by the Agency should be in-
ferred. This report also has not been reviewed by private party institutions, 
including those that support HEI Energy, and may not reflect the views or 
policies of these parties; thus, no endorsement by them should be inferred.
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Rish 2025) have been published. An observation made in these 
publications (e.g., US EPA 2022, 2024) is that the methods and 
approaches used in CI assessment depend on the decision 
context under which the CI assessment is being conducted. 
CI assessment has and can inform a variety of national, state, 
and local regulatory decisions about new or ongoing projects 
and development, and it can be used for nonregulatory, educa-
tional, and research purposes. See Table 1 for a matrix of exam-
ples of decision contexts and other contexts in which CI assess-
ment might take place (broadly, as well as within the context of 
UOGD). It should be noted that the majority of CI assessments 
are initiated as part of a regulatory decision-making process. In 
addition, the Tishman Environment and Design Center (2025) 
provides another resource that consists of a comprehensive 
evaluation of state policies that require assessment of cumula-
tive impacts in permitting decisions. 

In September 2024, HEI Energy released a research brief4 
that presented a scoping review of the peer-reviewed and gray 
literature that assesses or describes what is known about CI 
assessment, cumulative impacts of chemical and nonchem-
ical stressors (i.e., exposures and effects associated with envi-
ronmental, social, and economic factors), and methods for 
assessing the cumulative impacts experienced by popula-
tions affected by UOGD in the United States and Canada. The 
scoping review revealed a variety of analytical frameworks and 
decision contexts for conducting CI assessments and various 
methodologies primarily as practiced in the field of environ-
mental impact assessment. Few studies specifically analyzed 
cumulative impacts in populations affected by UOGD. More-
over, there remain several questions related to both theoretical 
and methodological aspects of CI assessment. Challenges cited 

throughout the literature include a lack of widely accepted 
guidance and terminology, limitations in data availability 
and quality, the need to establish new methods and refine 
existing methods for combining quantitative and qualitative 
data, and the need for strengthening community engagement 
in CI assessment processes and implementation. More broadly, 
although CI assessment processes fall short of wholly assessing 
cumulative exposures, there are many efforts currently under 
way aiming to advance and improve this practice. These efforts 
represent an important step in moving toward more compre-
hensive assessments that address community concerns. To be 
useful, these CI assessments need clear temporal, spatial, and 
substantive scopes to ensure that they can be feasibly com-
pleted within the time frame required for decision-making.

D. DECISION CONTEXT FOR THE ROADMAP

This CI assessment roadmap can be adapted for various 
decision contexts. To illustrate the general steps that might be 
conducted within a CI assessment, the roadmap incorporates 
several example communities in US oil and gas regions where 
HEI Energy is funding research5 (Figure 1). See Box 1 for a brief 
description of the HEI Energy-funded study locations and com-
munities that will be referenced throughout the roadmap.

E. THE SPECIAL PANEL’S APPROACH TO INFORM 
THIS ROADMAP

In 2024, HEI Energy formed a Special Panel on Cumula-
tive Impact Assessment to inform the set of considerations for 
assessing cumulative exposures outlined in this roadmap. The 

Table 1. Examples of Educational, Research, and Decision Contexts for CI Assessment

Context for CI Assessment Examples

Educational contexts •	 Raising awareness (Saha et al. 2024)
•	 Educating community members and policymakers (Ellickson et al. 2024)

Research contexts •	 Community-driven and other types of scientific research (Lam et al. 2022)
•	 Theoretical framework formulation (Jones 2016)

Regulatory contexts

Federal •	 Cumulative effects analysis required under the National Environmental Protection Act 
(NEPA) (CEQ 1997)

State •	 State-level environmental assessment mandates (e.g., California Environmental Quality 
Act (CEQA) (P.R.C. § 21000 et seq), Massachusetts Environmental Policy Act (MEPA) 
(M.G.L. Ch. 30, §§ 61-62L), Montana Environmental Policy Act (MEPA) (75-1-102 
M.C.A))

•	 Permitting regulations (e.g., permitting of facilities in New Jersey (N.J.A.C. 7:1C); 
approval of air permits in Massachusetts (310 C.M.R. 7.00); solid waste management in 
New Mexico (20.9.3 N.M.A.C); approval, changes to operations, and filing fees for oil 
and gas operations in Colorado (2 C.C.R. § 404-1))

Local •	 Permitting decisions (e.g., construction or modification of stationary sources in Albu-
querque-Bernalillo County, New Mexico (20.11.72 N.M.A.C))

•	 Land use and zoning decisions (e.g., applying for commercial or industrial develop-
ments within Newark, NJ (Title XLI § 41:20))
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Figure 1. HEI Energy-funded study locations used as example contexts for illustrating the application of this roadmap. UOGD basins 
are shaded in gray, and the portion of the basin associated with each study location is shaded in blue.

Box 1. Description of HEI Energy-Funded Study Locations Used as  
Example Contexts for Illustrating the Application of This Roadmap

HEI Energy funded the “Tracking community exposures to air 
emissions and noise from oil and gas development” (TRACER) 
collaboration to better understand population exposures to 
air emissions and noise from oil and gas development in mul-
tiple US regions. The regions differ with respect to environ-
mental, social, and economic conditions as well as the types 
of oil and gas resources, and the collaboration was designed 
to quantify the variability in exposure that stems from these 
differences. More information about the studies can be found 
at https://www.heienergy.org/. The study locations used as exam-
ple contexts in this roadmap include a subset of those studied 
as part of the TRACER collaboration: the Denver-Julesburg 
region in Colorado, the Marcellus region in Pennsylvania, and 
the Permian region in New Mexico. 

Governance of oil and gas operations in some study locations 
includes requirements for CI assessment. Although Colorado, 
Pennsylvania, and New Mexico do not have formal state-level 
rules similar to NEPA, some agencies in these states require 
or have proposed environmental impact assessments or sim-
ilar procedures that may include consideration of cumulative 
impacts (EJC 2022). 

	● In Colorado, the Energy and Carbon Management Com-
mission adopted the “Cumulative Impacts and Enhanced 
Systems and Practices Rules” in 2024 (2 C.C.R. § 404-1). 

Under this regulation, oil and gas operators who are seek-
ing new drilling permits are required to assess cumulative 
impacts and implement community outreach protocols. 
The rules’ adoption follows the requirement to address 
cumulative impacts as outlined in Colorado Senate Bills 
19-181 and 24-229 and Colorado House Bill 24-1346. 
Colorado House Bill 21-1266 additionally mandates the 
Colorado Air Quality Control Commission to adopt and 
implement regulations aimed at reducing greenhouse gas 
emissions from oil and gas. 

	● In Pennsylvania, draft legislation was introduced in 2023 in 
the Pennsylvania Senate that would require an assessment 
of cumulative environmental impacts for permits (including 
air, waste, and oil and gas injection wells) issued for facilities 
located within areas with populations defined by the state as 
vulnerable and experiencing high levels of pollution (S.B. 888). 

	● In New Mexico, the state senate introduced a bill in 2007 
that would include consideration of cumulative impacts 
pertaining to environmental permitting processes (S.B. 
880). The bill was unsuccessful, but state-level regulations 
related to permitting solid waste facilities include provi-
sions for conducting a community impact assessment in 
certain cases (20.9.3 N.M.A.C.). 

Special Panel included representation from individuals with 
expertise and experience in environmental health, epidemi-
ology, sociology, strategic planning, leadership, communica-
tion, and community organizing (see Appendix C for biogra-
phies of panel members); additional oversight was provided by 
the HEI Energy Research Committee. 

HEI Energy and the Special Panel conducted a multistep 

approach to identify potential adverse and beneficial impacts 
on the health and well-being of communities located near and 
affected by UOGD. They also formulated a flexible set of guiding 
questions and resources that can inform a CI assessment and 
be adapted for various decision contexts. Broadly, this multi-
step approach consisted of gathering information to inform the 
roadmap, deliberating to conceptualize and draft the roadmap, 
and reviewing the roadmap. In the information-gathering 

https://www.heienergy.org/
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phase, HEI Energy hosted a series of three educational webi-
nars between February and June 2024, with speakers dis-
cussing (1) an introduction to CI assessment, (2) regional and 
local perspectives on assessing cumulative impacts, and (3) 
methods for CI assessment. The webinar recordings are pub-
licly available on HEI Energy’s website.6 HEI Energy also pro-
duced a research brief (published in September 2024 and avail-
able on the website) that summarized the results of a scoping 
review that described what is known about cumulative 
impacts experienced by populations affected by UOGD and 
outlined methods for assessing them. Throughout spring and 
summer 2024, HEI Energy project staff conducted various one-
on-one consultations with individuals who work on cumula-
tive impacts, and along with the Special Panel on Cumulative 
Impact Assessment, consulted additional literature on related 
topics, including community perspectives, engagement, and 
benefits; risk assessment, cumulative risk assessment, and 
health impact assessment; as well as UOGD research methods. 
The Special Panel met periodically from spring 2024 to spring 
2025 and contributed to all phases of the project (information 
gathering, drafting of the roadmap, and responding to review of 
the roadmap). This roadmap was reviewed by a total of seven 
external reviewers representing the US EPA, state government, 
the oil and gas industry, academia, and community and non-
profit groups.

F. ROADMAP STRUCTURE

The considerations for assessing cumulative exposures out-
lined in this document are structured as a flexible roadmap that 
can be adapted for various decision contexts. The structure for 
the roadmap reflects a four-phase, generic process for CI assess-
ment (Figure 2): (1) a developing partnerships and commu-
nity engagement phase, to identify and build relationships in 

the community who are interested in or affected by the pre-
vailing decision context; (2) a scoping phase, to define and pri-
oritize values and impacts and to set boundaries for the assess-
ment; (3) an analysis phase, to assess trends and cumulative 
impacts, which includes data collection, data generation, and 
data analysis; and (4) a management phase, to implement strat-
egies for preventing, minimizing, or monitoring impacts or out-
comes. Each of the roadmap’s phases is explored in detail in 
the sections that follow. Importantly, strong communication 
and engagement among all assessment participants, as well as 
those interested in or affected by the assessment, should occur 
throughout all phases of the CI assessment.

It should be noted that CI assessments might not include 
every phase, depending on the decision context (except the 
analysis phase, which provides the foundation for any CI 
assessment and is therefore always included). For example, 
analyses of cumulative impacts in some state-level environ-
mental decision-making processes focus on visualization and 
analysis of the multiple impacts experienced by communities 
to inform permitting or funding decisions (N.J.A.C. 7:1C, S.B. 
535; A.B. 1550). In that context, the management phase is not 
necessarily included if the outcome of the assessment process 
is the denial of a permit or funding. A CI assessment might 
also include iteration within and across phases. For example, 
as part of its cumulative impacts rulemaking, the Minnesota 
Pollution Control Agency held several public working sessions 
on the scoping phase to iterate on identifying and prioritizing 
impacts and datasets to use in the assessments (MPCA 2024). 
In addition, depending on the prevailing decision context, the 
analysis and management phases might include an iterative 
process to maximize benefits while minimizing or preventing 
adverse impacts on human health and well-being of individ-
uals in an affected population (IFC 2013). 

Figure 2. Overview of the four-phase, generic process for CI assessment described in this roadmap, including communication and 
engagement throughout the CI assessment process (large arrow) and the potential for iteration between phases (shown using thin 
arrows). 
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Each section of this roadmap includes an overview of the 
CI assessment phase, and a set of guiding questions, poten-
tial resources,7 and example contexts drawn from HEI Energy-
funded study locations that are specific to the UOGD experience. 

G. KEY CONCEPTS AND TERMINOLOGY

The set of considerations for assessing cumulative expo-
sures outlined in this document is presented using terminology 
associated with cumulative impacts. The scoping review of 
the literature on CI assessment generally and CI assessment in 
the context of UOGD revealed a range of terminology related 
to cumulative impacts, including both nuanced and distinct 
differences in definitions. For this reason, Blakley and Russell 
(2022) noted that basic CI assessment terms and concepts are 
not well understood. Below, we outline key terminology used 
throughout this roadmap. 

We intentionally define terms for ease of comprehension 
across a wide audience. This roadmap modifies the definitions 
of “cumulative impact assessment” and “cumulative impacts” 
used by the US EPA (2022, 2024):

Cumulative impact assessment: A process of evaluating 
both quantitative and qualitative data representing cumu-
lative impacts to inform a decision, including strategies to 
prevent, minimize, or modify cumulative impacts to the 
extent possible. 

Cumulative impacts: The totality of impacts that might 
affect human health and well-being for individuals in an 
affected population. 

Impacts: Consequences of adverse or beneficial exposures 
associated with combinations of environmental, social, and 
economic factors that can affect human health and well-
being for individuals in an affected population.

Other key terms that appear in this roadmap include the fol-
lowing:

Community: A place-oriented process of interrelated actions 
through which members of a local population express a 
shared sense of identity while engaging in the common con-
cerns of life (Theodori 2005).8 

Health and well-being: A state of complete physical, mental, 
and social wellness, and not the mere absence of disease or 
infirmity for all persons who live, work, or are otherwise 
active in a defined community or communities (Goodman 
et al. 2014; WHO 1946).

In this roadmap, CI assessment encompasses a process 
of evaluating an array of potential impacts that might affect 
human health and individual and community well-being. 
Projects or activities that are the subject of a CI assessment 
may contribute to changes in some factors or a combination 
of factors (often termed chemical or nonchemical stressors 
in the literature related to cumulative impacts) that might or 
might not lead to adverse or beneficial exposures resulting 

in impacts on human health and individual and community 
well-being. For ease of comprehension, this roadmap illus-
trates the CI assessment process in the context of populations 
affected by UOGD.

II. ROADMAP

A. PHASE 1 — DEVELOPING PARTNERSHIPS AND 
COMMUNITY ENGAGEMENT

Partnerships and community engagement are defining com-
ponents of the CI assessment process. Regardless of the deci-
sion context, building partnerships and engaging with people 
in communities across sectors who might be interested in or 
somehow affected by the decision is essential to a successful, 
meaningful, and trusted CI assessment. Furthermore, continued 
communication and engagement are essential throughout and 
after the CI assessment process. HEI has developed guidance 
to help its funded investigators conduct effective engagement 
with individuals and groups who might use or be affected by 
their research (HEI 2025). The principles for such engagement 
can be more broadly applied to building effective partnerships 
and community engagement for a CI assessment in populations 
affected by UOGD and are modified below for this context.

•	 Define the value the CI assessment is aiming to create for 
and with populations affected by UOGD as a basis for con-
tinuing partnership and engagement and for promoting 
ongoing learning by and with communities.

•	 Work in partnership with local organizations that have 
strong relationships and ties to [populations affected by 
UOGD] for all aspects of community engagement.

•	 Proactively reduce logistical barriers to participation.

•	 Practice transparency and open communication that con-
siders cultural and language characteristics.

•	 Commit to continued learning and reflection on community 
engagement practice.

Building multisectoral partnerships and engaging commu-
nity members is itself a process and should begin early in the 
development of the assessment and continue throughout and 
after the assessment process. Key tasks include identifying 
multisectoral partners and participants for the assessment, 
defining the level and form of engagement for all assessment 
participants, and developing a communication plan that will 
be used throughout and after the assessment process. Multi-
sectoral partnerships can include collaboration across a range 
of participants interested in or affected by the CI assessment, 
including collaboration within and across government agen-
cies, as well as among and between academic researchers and 
industry. 

In the context of populations affected by UOGD, addi-
tional consideration needs to be given to the state of “research 
fatigue” that might be present in a community. Many social 
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science research efforts have been conducted in regions expe-
riencing UOGD to understand the community impacts of 
energy extraction activities (Walsh et al. 2020), including 
in the study location communities referenced in this design 
(in particular, Colorado and the Marcellus region in Pennsyl-
vania). These efforts have resulted in what has been termed 
“research fatigue,” which broadly refers to community senti-
ment of being over-researched and an unwillingness or disin-
terest in participating in further research efforts. Additionally, 
some communities have expressed disinterest in participating 
in research efforts because of the feeling of being a laboratory 
experiment as opposed to an individual (Scharff et al. 2010). 
Any CI assessment in such communities would benefit from 
careful attention to any efforts that have preceded the assess-
ment and review best practices for better partnerships and 
community engagement (e.g., Taylor et al. 2021). The following 
guiding questions are designed to begin this process and to 
determine which individuals, communities, sectors, or groups 
should be involved; why they should be included or want to 
participate; and how the engagement should proceed. 

GUIDING QUESTIONS

•	 Who? 

	� Who will be leading the CI assessment?

	� Who might be affected by any decisions related to 
this CI assessment?

	� Who has expressed interest in participating in the CI 
assessment process? 

	� Who has expertise and experience that might be valu-
able?

	� Who has been involved in any prior assessments or 
research efforts?

	� Who has not been involved or under-represented in 
such efforts?

•	 What?

	� What is the value of the CI assessment for partici-
pating partners, including government, industry, 
community members, and the general public?

	� What are the roles and responsibilities of assessment 
participants? 

	♦ How will roles and responsibilities be defined? 

	� What other assessments or research efforts have taken 
place in this community? 

	� What type of communication plan is best suited for 
the CI assessment process?

•	 How? 

	� How will participation be facilitated? 

	� How will participation be compensated? How will 
participants’ information be protected?

	� How will the general public be involved? How is the 
general public being defined?

	� How will communication take place throughout and 
after the assessment process? 

	♦ How will all aspects of the assessment process 
be communicated between assessment partici-
pants?

	♦ How will all aspects of the assessment process and 
results be communicated to the general public? 

Best practices and principles for effective engagement with 
communities and other sectors have been developed by var-
ious groups and institutions; several potential resources are 
listed below. The list is not exhaustive, nor should it be inter-
preted as referring to the optimal resources to consult.

POTENTIAL RESOURCES

•	 Ipieca Meaningful Engagement Practitioner Guide9 

•	 Groundwork USA Best Practices for Meaningful Commu-
nity Engagement10

•	 Urban Institute Fostering Partnerships for Community 
Engagement11

•	 American Petroleum Institute Community Engagement 
Guidelines12

B. PHASE 2 — SCOPING

The scoping phase of a CI assessment is intended to both 
explore and set parameters and boundaries for the breadth of 
the assessment. The scoping phase lays the groundwork for the 
analysis phase of the CI assessment through a process of linking 
sources of concern with potential impacts. The scoping phase 
might include the following actions: identify potential adverse 
and beneficial impacts associated with UOGD and which expo-
sures or factors are related to such impacts; define methods 
for prioritizing impacts; prioritize impacts valued by assess-
ment participants that merit consideration in the assessment; 
establish flexible geographic and temporal boundaries related 
to the impacts that will be assessed; and identify other factors 
unrelated to UOGD that can influence the identified impacts. 
There are multiple approaches to conducting scoping activi-
ties that might partly be dictated by the decision context (US 
EPA 2024). For example, some state regulations that include CI 
assessment require the use of a particular template and associ-
ated geospatial mapping tool for air permit applications (310 
C.M.R. 7.02(14)). Regardless of the methods and approaches 
chosen, scoping should be conducted in consultation with all 
CI assessment participants.

i. Identify Potential Impacts and Related Exposures or 
Factors

The scoping phase of a CI assessment begins with identifica-
tion of potential impacts to include in the CI assessment. There 
are a range of adverse and beneficial impacts documented 
throughout the peer-reviewed and gray literature that might 
affect individuals and populations affected by UOGD. Table 213 
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Table 2. Summary of Potential Impacts on Individuals and Populations Affected by UOGD in the United States and 
Canada Identified in Peer-Reviewed and Gray Literaturea,b

Category Impacts Identified in Peer-Reviewed and Gray Literature 

Natural Environment

Ambient and hazardous air 
pollutants

Emissions of the following pollutants:
Fine particulate matter (PM2.5)
Coarse particulate matter (PM10)
Nitrogen oxides (NOx)
Ozone (O3)
Hazardous air pollutants (HAPs), including benzene, toluene, ethylbenzene, and xylenes (BTEX)
Volatile organic compounds (VOCs)
Dust

Water Discharge and seepage of wastewater
Contamination of the following:
Freshwater (bromides)
Groundwater (BTEX)
Surface water

Greenhouse gases Methane emissions

Noise Noise and vibration pollution

Other emissions Light pollution
Odor emissions
Soil pollution

Environmental degradation Biodiversity and habitat loss
Changes in greenspace
Increases in invasive species
Land use change, physical and sensory changes to landscapes

Accidents Spills, leaks, blowouts

Built Environment

Transportation Changes in traffic

Infrastructure Road damage
Changes in walkability

Socioeconomic

Employment Changes in employment conditions
Increased employment opportunities
Increases in unemployment during busts

Income Changes in personal income
Changes in poverty levels
Redistribution of wealth

Cost of living Changes in housing value
Increases in cost of living

Public revenue and local 
government services

Strains on local public services and infrastructure (such as emergency services, doctors, hospi-
tals, clinics)
Increases in local government revenue

continued
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Category Impacts Identified in Peer-Reviewed and Gray Literature 

Health Outcomes

General Decreases in happiness and life satisfaction, quality of life
Decreases in self-rated health
Decreases in self-rated sleep

Morbidity/mortality Increases in rates of cancer outcomes
Increases in rates of adverse cardiovascular outcomes
Increases in rates of adverse pregnancy outcomes
Increases in rates of adverse respiratory outcomes
Increases in rates of adverse mental health outcomes
Increase in other rates of other adverse outcomes
Changes in mortality

Psychosocial and Spiritual

Psychosocial Increases in psychosocial stress
Increases in symptoms of anxiety 
Increases in depressive symptoms
Changes in feelings of safety

Powerlessness Feelings of powerlessness
Differences in access to information about UOGD

Identity and values Changes in civic engagement
Changes in attitudes toward environmental concerns and exposure
Feelings of disenfranchisement
Changes in political identity
Loss of sense of place and attachment

Spiritual Loss of attachment to the land and local environment

Community

Quality of life Changes in neighborhood quality
Increases in cultural erosion
Changes in perceptions of equity
Decreases in social cohesion, social capital
Increases in social disruption, displacement
Changes in population
Increases in crime

a The set of reviewed literature was not exhaustive and might not have identified impacts in all categories. Lack of identified impacts in a cate-
gory should not be interpreted as meaning that such impacts do not exist or are not important.

b References are listed in Appendix A, Table A-1. 

Table 2. (continued)
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summarizes the range of potential impacts identified in peer-
reviewed literature in the context of populations affected by 
UOGD. Peer-reviewed literature was identified using a search 
strategy similar to that in Romitti and colleagues (2024) and 
using HEI Energy’s spatial bibliography.14 The list does not 
constitute a comprehensive review of all such peer-reviewed 
literature regarding potential impacts in the context of popula-
tions affected by UOGD. 

The relevance of these impacts will vary by decision con-
text and across communities. Identifying impacts necessarily 
includes consideration of what associated exposures or fac-
tors could lead to such impacts. In addition, it is important 
to consider what intrinsic (such as individual biology and 
genetics) and extrinsic (such as socioeconomic status, access 
to healthcare, housing quality) characteristics at both the 
individual and community levels might interact and modify 
impacts on the human health and well-being of individuals 
in an affected population. Approaches to identifying and pri-
oritizing impacts vary (as discussed below in the Prioritizing 
Impacts section).

The following set of guiding questions is designed to help 
identify and prioritize potential impacts and their associated 
exposures or factors.

GUIDING QUESTIONS

•	 Which impacts on the natural environment, built environ-
ment, socioeconomic conditions, health, psychosocial fac-
tors, spiritual well-being, and community-level dynamics 
can be identified as affecting the human health and well-
being of individuals in an affected population? 

•	 Which impacts (natural environment, built environment, 
socioeconomic, health, psychosocial, spiritual, and com-
munity level) are being experienced in the community that 
are potentially related to UOGD? 

	� What has been identified in scientific literature?

	� What has been identified by the community?

•	 What exposures or factors are associated with the identi-
fied impacts?

•	 Which, if any, of the impacts are not uniformly distributed 
across individuals or populations of interest? 

POTENTIAL METHODS

•	 Literature reviews

•	 Ethnographic research methods, including surveys and 
focus group interviews

•	 Community-based participatory research methods, 
including community group discussions, forums, town 
halls, and other meetings

•	 Multisector forums and meetings

Studies on environmental health and studies of commu-
nity perceptions and concerns throughout the study location 
regions in this design have identified multiple potential expo-
sures and impacts related to the health and well-being of indi-
viduals or community members that might be associated with 
UOGD, some of which are listed in Table 3. Peer-reviewed lit-
erature was identified using a search strategy similar to that 
in Romitti and colleagues 2024 and using HEI Energy’s spa-
tial bibliography. The list does not constitute a comprehensive 
review of all the peer-reviewed literature regarding potential 
impacts in the three study locations.

ii. Prioritize Impacts

After identifying potential impacts to include in the CI 
assessment, the scoping phase generally includes a process 
of prioritizing which impacts (and thus their associated expo-
sures or factors) to include in the assessment. Although there 
will typically be a wide array of impacts of concern to a com-
munity or population affected by UOGD, it is not always nec-
essary, feasible, or desirable to attempt to assess an unwieldy 
number of potential impacts. Prioritizing which impacts to 
assess will partly be determined by the decision context. For 
example, assessment of cumulative impacts for air quality 
permit applications in Massachusetts requires consideration 
of impacts on air quality, health, socioeconomics, and state-
defined susceptible groups, as well as consideration of whether 
there are nearby regulated facilities (310 C.M.R. 7.02(14)); in 
this case, the state regulation determines which impacts to pri-
oritize. Prioritizing impacts can also be determined through a 
valuation judgment process that is based on a set of criteria 
agreed upon by all assessment participants. These criteria can 
be subjective or identified using, for example, a conceptual 
modeling exercise that explores relationships among identi-
fied impacts and their associated exposures or factors. Often, 
prioritizing impacts is largely determined by the availability 
and quality of information and data on identified impacts in a 
community, as well as time and resources available for the CI 
assessment. 

The prioritization process involves consideration of not 
only causal and associational relationships among the various 
impacts, but also potential interactions between impacts (e.g., 
are the impacts additive, synergistic, antagonistic?) to deter-
mine which impacts to prioritize for assessment. Consider the 
example of increased truck traffic in a community affected by 
UOGD. Truck activity can increase noise in a neighborhood 
and potentially contribute to psychosocial stress (Adgate et 
al. 2014; Klasic et al. 2022). It can also increase traffic-related 
air pollution, likely contributing to changes in local air quality 
(Adgate et al. 2014; Klasic et al. 2022). In addition, increased 
truck traffic might require changes to local infrastructure, such 
as building new roads, which might contribute additional jobs 
and local revenue for the community (Mayer 2017). Not only 
does increasing truck traffic have multiple impacts, but the 
impacts can interact: the combination of increased psycho-
social stress and changes in air quality might adversely affect 
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Table 3. Summary of Potential Impacts Associated with UOGD in the Example Context Study Locations for This 
Roadmap That Have Been Identified in Peer-Reviewed and Gray Literature of Studies on Environmental Health and 
Studies of Community Perceptions of UOGDa

Denver-Julesburg Region, 
Colorado

Marcellus Region, 
Pennsylvania Permian Region, New Mexico

Natural Environment

Ambient and haz-
ardous air pollutants 

Emissions of HAPs, NOx, and 
VOCs

Emissions of HAPs, O3, PM2.5, 
VOCs

Emissions of black carbon, 
BTEX, HAPs (polycyclic aro-
matic hydrocarbons [PAHs]), 
NOx, PM2.5, O3, VOCs

Water Water use in UOGD

Contamination of 
groundwater (e.g., BTEX)

Contamination by methane, 
BTEX, and other toxic pollut-
ants

Water use and availability from 
UOGD and wastewater manage-
ment

Greenhouse gases Methane emissions Methane emissions (including 
from abandoned wells)

Methane emissions

Noise Noise pollution Noise pollution Not identified in the set of 
reviewed literature

Environmental degra-
dation

Perceived environmental degra-
dation associated with UOGD

Perceived degradation of air and 
water quality

Perceived environmental degra-
dation associated with UOGD

Accidents Surface spills and leaks Spills, leaks, blowouts Not identified in the set of 
reviewed literatureb

Built Environment

Transportation and 
infrastructure

Stress on local infrastructure: 
increase in road traffic

Stress on local infrastructure: 
increase in road traffic and con-
gestion, road damage, and safety 
concerns

Not identified in the set of 
reviewed literature

Socioeconomic

Employment Fluctuating employment New employment opportunities

Changes in job types and avail-
ability

Increases in unemployment 
during busts

New employment opportunities

Income Changes in income and poverty 
levels

Unrealized monetary benefits 
to homeowners due to conflicts 
between mineral rights and sur-
face owner rights

Changes in wage inequality Increases in local economic 
growth

Changes in income across 
boom-bust cycles

Cost of living Housing shortages and 
increased housing prices due to 
the increased population

Housing shortages
Increases in local prices

Housing shortages during boom 
cycles

Public revenue and 
local government ser-
vices

Increases in public revenue and 
local economic growth

Social service strain due to pop-
ulation growth and the influx of 
migrant workers

Increases in public revenue and 
local economic growth

continued
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Denver-Julesburg Region, 
Colorado

Marcellus Region, 
Pennsylvania Permian Region, New Mexico

Health Outcomes

Increases in noncancer out-
comes

Increases in cancer outcomes

Changes in self-rated health

Increases in physical health 
problems
Increases in collective trauma 
related to industrial accidents
Increases in noncancer out-
comes
Increases in cancer outcomes
Decreases in self-rated health

Not identified in the set of 
reviewed literature

Psychosocial and Spiritual

Stress Increases in psychosocial stress

Feelings of complicity or guilt 
for those dependent on the 
UOGD industry

Increases in psychosocial stress Environmental distress associ-
ated with changing landscapes

Powerlessness Feelings of powerlessness and 
mistrust

Changes in access to informa-
tion about UOGD and a sub-
sequent reduction in deci-
sion-making capacity

Feelings of powerlessness 
and anger regarding industry 
accountability
Feelings of powerlessness in 
negotiations with the UOGD 
industry due to dependence on 
the industry for income
Frustration due to a lack of 
access to tools and information 
related to UOGD

Not identified in the set of 
reviewed literature

Identity and values Changes in political identity Loss of rural way of life
Loss of attachment to land due 
to industrial development

Changes in attitudes toward 
environmental change

Spiritual Not identified in the set of 
reviewed literature

Not identified in the set of 
reviewed literature

Not identified in the set of 
reviewed literature

Community

Quality of life Changing neighborhood condi-
tions

Changing community dynamics
Increased crime

Changing community dynamics

a References are listed in Appendix A, Table A-1. 
b The set of reviewed literature was not exhaustive and might not have identified impacts in all categories across study locations. Lack of iden-

tified impacts in a category should not be interpreted as meaning that such impacts do not exist in that study location or are not important.

Table 3. (continued)
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individual health, but changes to local infrastructure and the 
economy might benefit community health broadly. 

The prioritization process also includes considering what 
metrics are needed to assess cumulative impacts. Building on 
the example discussed above, what would be the most useful 
metrics to assess changes in noise, air quality, infrastructure, 
and jobs in a community? Are there measures that are specific 
to truck traffic? Metrics can be used to assess changes from 
a baseline point in time and progressively over the course of 
time. As noted above, the availability and quality of informa-
tion and data often determine which impacts are prioritized 
(i.e., selected) and what metrics are included in a CI assess-
ment. 

GUIDING QUESTIONS

•	 Which impacts are of specific value to the community? 

•	 How do these impacts relate to one another?

	� What causal and associational relationships between 
identified impacts and their associated exposures 
and factors can be identified? Which relationships 
are strongest?

	� Do certain impacts occur together? Similarly, do cer-
tain exposures and factors that result in impacts of 
concern occur together?

	� What potential interactions between impacts can be 
identified?

•	 What information and data are available on the identified 
impacts? 

	� Are critical data or information missing?

	� Are additional data collection efforts needed? 

	� What is the temporal and spatial scale of available 
information and data? 

•	 What metrics (whether qualitative or quantitative, or a com-
bination of the two) will be used to assess impacts, and 
what criteria will be used to determine which impacts will 
be included in the assessment? 

•	 What impacts can feasibly and practically be assessed 
within the scope, time, and resources of the CI assessment? 

•	 How and where do we incorporate the concept of “value 
of information”? In other words, we can study countless 
impacts, but the time and money might be better spent 
addressing an impact rather than studying it.

POTENTIAL METHODS

•	 Literature reviews

•	 Ethnographic research methods, including surveys, focus 
groups, and in-depth interviews

•	 Community-based participatory research methods, 
including community group discussions, forums, town 
halls, and other meetings

•	 Local, state, and federal publicly available data 

•	 Local, community, and industry data sources or data col-
lection

•	 Multisector forums and meetings

iii. Geographic and Temporal Boundaries

The scoping phase of a CI assessment also includes consider-
ation of the geographic and temporal boundaries of the impacts 
that will be prioritized in the assessment. The geographic and 
temporal boundaries will likely be determined by the decision 
context. For example, an air permitting process might require 
that a source of air pollution be within a certain proximity (e.g., 
within 1 mile) to be considered. Setting geographic boundaries 
often includes considering the spatial area directly affected by 
the sources of concern and the spatial extent of the impacts that 
will be assessed. In practice, this means that CI assessments 
are often conducted on local or regional scales, although they 
can also be used at broader geographic scales, depending on 
the decision context. In the context of populations affected by 
UOGD, geographic boundaries for the assessment will likely 
be based on the proximity to UOGD activities (e.g., setback 
distances). It might also be based on census geographies (i.e., 
census tracts, counties, or states where UOGD activities are 
located). Additionally, local and regional economic impacts 
might be important in determining geographic boundaries in a 
CI assessment in the context of UOGD, because the economic 
impacts of UOGD can extend to nearly 100 miles from develop-
ment activities (Feyrer et al. 2017).

Temporal boundaries are often determined based on the 
life cycle of the source of concern and the time horizon for the 
prioritized impacts. For communities affected by UOGD, this 
decision includes consideration of whether to assess impacts 
from both the boom-and-bust cycle of activity. 

Overall, determining spatial and temporal boundaries in 
a CI assessment is an iterative process that should be respon-
sive to professional judgment, risk management, existing con-
ditions, and operational life of a project (Hegmann et al. 1999). 

GUIDING QUESTIONS 

•	 Does the decision context predetermine the geographic and 
temporal scope of impacts?

•	 What is the spatial extent of UOGD activities for the com-
munity? 

•	 Does the set of prioritized impacts extend beyond the iden-
tified boundaries of UOGD activities?

•	 What phase of UOGD activity is the community experi-
encing?

•	 How far into the past should the CI assessment look, given 
the prioritized impacts? 

•	 How far into the future should the CI assessment look, given 
the prioritized impacts? 
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Impact Prioritization Across Example HEI Energy-Funded  
Study Locations

Denver-Julesburg Region of Colorado
Studies that include surveys of communities in Colorado have 
identified several potential impacts in the region. These studies 
have highlighted impacts on the environment (including changes 
to air quality, potential water contamination, and increased 
noise levels) in this region. Other impacts that have been 
documented include socioeconomic impacts such as increased 
public revenue, changes in employment conditions (including 
unemployment), and concerns associated with an increasing 
population in the community (Haggerty et al. 2018; Malin 
2020; Newell and Raimi 2018). Other studies have identified 
concerns about psychosocial stress, guilt, and powerlessness 
associated with economic insecurity, dependency on UOGD 
income, and decision-making regarding leasing rights for 
UOGD or permitting processes (Malin et al. 2023; Malin and 

Kallman 2024; Marlin-Tackie et al. 2020; McKenzie et al. 2016). 
One source of information to help prioritize impacts for 
the CI assessment in this location includes widely accessible 
databases, such as Colorado EnviroScreen, a publicly available 
screening tool that combines data on multiple measures related 
to the environment, demographics, socioeconomics, state-
defined susceptible populations, and climate (CDPHE 2024). 
Other sources of information include industry-provided data 
related to UOGD, as well as community-based data collection 
efforts. Additional data collection efforts might be needed 
to gather metrics on, for example, employment conditions, 
rates of unemployment, and the impact of a changing 
population on the community (e.g., housing cost, access to 
public services, and community dynamics and cohesion).

Marcellus Region of Pennsylvania 
Studies surveying community leaders and residents across 
the Marcellus region of Pennsylvania have identified multiple 
potential impacts of UOGD on communities. They can be 
broadly grouped into health impacts (headaches, respiratory 
issues, and stress), economic impacts (income and job creation, 
increased business activity, and tax revenue), social impacts 
(changing populations and increase in migrants), environmental 
impacts (degradation of water and air quality and large-scale 
landscape change), infrastructure and cost of living impacts 
(lack of housing, increased traffic, and road damage), and 
psychosocial impacts (feelings of stress and guilt due to 
dependency on UOGD income, feelings of powerlessness 
and frustration due to lack of access to information to inform 
decision-making) (Brasier et al. 2011; George 2019; Perry 2012, 
2013; Malin and DeMaster 2016; Weinberger et al. 2017). 

As in Colorado, a publicly available screening tool, 
PennEnviroScreen, is accessible that can help inform 

prioritization of impacts. PennEnviroScreen combines data 
on several metrics related to environmental exposures, as 
well as socioeconomic and demographic information (PA 
DEP 2023b). Other metrics related to some economic 
and infrastructure impacts can be obtained from publicly 
available datasets provided by the US Census Bureau 
(e.g., the American Community Survey). Nonetheless, 
as is the case in Colorado, information on other priority 
impacts might need to be collected through additional 
community-based surveys, focus groups, data-sharing 
partnerships with industry, or other resources. 

In addition, several groups in Pennsylvania convene yearly 
in a Shale and Public Health Conference.16 This forum 
provides another opportunity for multisector discussion 
of potential impacts associated with UOGD and might 
inform prioritization of impacts for a CI assessment. 

Permian Region of New Mexico
Few surveys of communities in the Permian region exist 
related to the potential impacts of UOGD on individual and 
community health and well-being. One study that surveyed 
community residents in the Permian region (of Texas, not 
New Mexico) (Elser et al. 2020) highlighted air quality, traffic-
related pollution, noise, vibration, and a general concern for 
environmental degradation as important impacts to consider 
in the region. Although no state-level screening tool that 
combines data on environmental and social metrics is available 
in New Mexico, the New Mexico Environment Department 
(NMED) provides information on several data resources related 
to air quality, water quality, and greenhouse gas emissions 

that can be useful in prioritizing impacts in those communities 
(NMED 2025b). It also provides a publicly available data catalog 
and interactive map with information on water, soil, and 
industrial and point source facilities locations (NMED 2018, 
2025a). In addition, the New Mexico Department of Health 
offers a publicly available data tool, the New Mexico Indicator-
Based Information System, that provides a range of information 
on health, demographic, and community health metrics 
across the state (NM Health 2022). As described in Colorado 
and Pennsylvania, industry-provided data and community-
based data collection efforts provide other ways to gather 
information on potential impacts for a CI assessment process.
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POTENTIAL METHODS

•	 Literature reviews

•	 Community-based participatory research methods, 
including community group discussion, forum, town hall, 
and other meetings

•	 Multisector forums and meetings

iv. Identify Other Related Factors

The scoping phase of a CI assessment generally includes 
consideration of other related factors that can influence what 
impacts are chosen for the assessment, such as terrain, weather, 
climatic, and atmospheric conditions, other sources of envi-
ronmental emissions, other sources of local government rev-
enue, and other sources of job creation. UOGD activities are 
often sited in communities near other sources that contribute 
to the same types of impacts associated with UOGD, such as 
changes to air quality and water quality, changes to local infra-
structure, or changes to the local economy. In addition, com-
munities with a long history of oil and gas development (OGD) 
or early UOGD are often located near active UOGD activities 
and abandoned oil and gas wells. 

GUIDING QUESTIONS 

•	 What other industries are located near the community? 

	� Are there other industrial activities included in the 
geographic and temporal boundaries set for the CI 
assessment?

•	 Are there adverse and beneficial impacts associated with 
nearby industries and other sources or activities that might 
affect, or are the same as, one or more impacts included in 
the CI assessment? 

•	 How might other identified impacts interact with the 
impacts selected for the assessment?

•	 What impacts related to terrain, weather, climatic, and 
atmospheric conditions might affect the prioritized impacts 
in the CI assessment? 

•	 Have CI assessments been performed for the other nearby 
sources during permitting processes or in the literature?

POTENTIAL METHODS

•	 Literature reviews

•	 Ethnographic research methods, including surveys, focus 
groups, in-depth interviews, and archival analyses

•	 Community-based participatory research methods, 
including community group discussions, forums, town 
halls, and other meetings

•	 Local, state, and federal publicly available data 

•	 Local, community, and industry data sources or data col-
lection

•	 Multisector forums and meetings

Geographic and Temporal Boundaries in the Denver-Julesburg Region  
of Colorado, the Marcellus Region of Pennsylvania, and the  

Permian Region in New Mexico
The Denver-Julesburg region spans more than 70,000 square 
miles. The majority of the basin is in Colorado, but it also 
extends into Wyoming, South Dakota, Kansas, and Nebraska 
(WSGS 2024). The counties of Weld, Arapahoe, Cheyenne, 
and Lincoln experience the highest levels of UOGD, 
although the basin encompasses 23 counties (ECMC 2024a). 
Meanwhile, the Marcellus region of Pennsylvania spans about 
95,000 square miles (US EIA 2017), with UOGD activity 
spanning the entirety of the southwest to northeast corners 
of the state, spanning 34 counties. Most UOGD activity is 
concentrated in Bradford, Susquehanna, Lycoming, Butler, 
Armstrong, Washington, and Green counties (PA DEP 2024). 
The Permian region consists of several shale plays spanning 
over 75,000 square miles, predominantly across New Mexico 
and Texas (US EIA 2020). The Permian Basin consists of 
66 counties, and Lea and Eddy counties are responsible for 

29% of UOGD activities in the region (US EIA 2023). In setting 
geographic boundaries to assess cumulative impacts in these 
regions, considerations include whether the CI assessment will 
cover all areas experiencing any level of activity in the regions or 
whether the assessment will focus on communities that experience 
the highest levels of activity. Another consideration is whether 
to include neighboring and adjacent counties where no UOGD 
activity is occurring, but that could experience spillover effects.
In all three regions, UOGD activity experienced boomtime 
activity beginning in the 2000s–2010s (Jacquet 2018; Raimi 
2017). Similar to setting geographic boundaries, setting 
temporal boundaries involves considering whether it is 
feasible for the assessment to span from the initial phases of 
development in the region (i.e., when the first unconventional 
well is drilled) through the boomtime phase of activities, or 
whether the focus will be on some other specific time frame.
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v. Summary of Scoping

A completed scoping phase in a CI assessment often 
includes a mutually agreed-upon list of prioritized impacts to 
assess, a set of associated metrics to measure impacts, and data 
sources that will be used to evaluate the prioritized impacts for 
the assessment. A completed scoping phase also identifies the 
geographic and temporal boundaries for the assessment, along 
with other related factors that might influence the impacts, 
metrics, or data sources that will be used. 

C. PHASE 3 — ANALYSIS

The analysis phase of a CI assessment builds on the results 
of the scoping phase and often continues the work of evalu-
ating relationships and interactions among impacts begun in 
the scoping phase. The analysis phase generally includes the 
following actions: a baseline assessment of population health, 
a baseline assessment of the prioritized impacts, an analysis of 
trends and the cumulative impacts of the prioritized impacts, 
and a determination of the significance of the cumulative 
impacts. As described in the scoping phase, impacts (and their 
associated exposures or factors) can interact or relate to one 
another in multiple ways. For this reason, cumulative impacts 
can be considered additive, incrementally interactive, or syn-
ergistic (see Blakely 2021 for a detailed description of types of 
cumulative impacts). Multiple methods can also be applied in 
the analysis phase for assessment of cumulative impacts; these 
include index-based methods, matrix-based methods, statis-
tical models, and spatial analysis (see Rish et al. 2024, and Ver-
weil and Rish 2025 for a comprehensive review of methods 
related to assessing cumulative impacts). Analysis methods 
can be quantitative or qualitative, or some combination of 
the two. Importantly, methods for analyzing and assessing 
cumulative impacts — including methods for combining and 

evaluating different types of qualitative and quantitative data, 
determining relationships among impacts, and assessing and 
weighing tradeoffs between adverse and beneficial impacts — 
remain an active area of study across sectors. As such, the con-
siderations outlined in the following sections were formulated 
to inform the process of analysis, rather than provide detailed 
guidance for specific methods.

 i. Assess Baseline

The analysis phase of a CI assessment generally begins with 
a baseline assessment that provides a point of reference with 
which to analyze changes and trends in the community and 
in the prioritized impacts. Collecting information on baseline 
community health can provide information on intrinsic (e.g., 
age, demographics) and extrinsic (e.g., access to healthcare) 
characteristics at the individual and community level that 
might modify identified impacts. 

A lack of baseline data for evaluating trends in populations 
affected by UOGD has historically been cited as a challenge in 
assessing impacts of concern for these communities (Adgate et 
al. 2014). However, a lack of definitive baseline data does not 
prevent one from conducting a CI assessment. If information or 
data are not available, surveys or interviews can help establish 
baseline information for the impacts being assessed, or base-
line conditions can be approximated using statistical models. 
Community knowledge and data (e.g., ethnographic interviews 
and surveys, community-sourced local science data, and oral 
histories) are also valuable to establish baseline information. 
Each approach should consider the precision and accuracy 
required to meet the overall assessment objectives character-
ized during the scoping phase. 

Other Related Factors in the Denver-Julesburg Region of Colorado,  
the Marcellus Region of Pennsylvania, and  

the Permian Region in New Mexico
Other related factors that could affect one or more impacts 
selected for a CI assessment in the study regions referenced 
in this roadmap primarily consist of (1) other active 
industries or activities in the region that might contribute 
to, for example, emissions of air pollutants, employment 
rates, and sources of income; and (2) other climatic factors 
that could affect impacts selected for a CI assessment.

In addition to UOGD, conventional oil and gas extraction 
occurs in all regions referenced in this roadmap (Fishman 
2005; Raimi 2017). In both the Denver-Julesburg and Marcellus 
regions, substantial agricultural activity contributes other 
sources of emissions and economic benefits to these regions 
(Haggerty et al. 2019; Hoy et al. 2018; Pétron et al. 2014; 
Riddick et al. 2022). Other industries present in the Marcellus 
region include coal mining and petrochemical production 

(US EIA 2024). For example, a large ethane cracker plant is 
located in Beaver County, PA, which is also a dense locus 
of UOGD activity (Shell n.d.). In the Permian region, other 
active industry includes crude oil refining (US EIA 2024). 

Other climatic factors present in the Denver-Julesburg 
and Permian regions include aridity and susceptibility to 
wildfires that might also affect prioritized impacts in the 
region (Metro Denver EDC 2025; New Mexico State 
University 2025). In the Denver-Julesburg region, temperature 
inversions also occur, given the region’s topography, which 
affects air quality (City and County of Denver 2025). The 
Marcellus region of Pennsylvania features a continental 
climate with variable temperatures and more precipitation 
compared with the rest of the state (NCDC n.d.).
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GUIDING QUESTIONS

•	 What time frame will be used to collect baseline informa-
tion about the community (e.g., will the baseline assessment 
reflect conditions before UOGD)?

•	 What is the community’s baseline health status?

	� Information related to baseline health status might 
include demographic, socioeconomic, quality of life, 
and health-related characteristics, such as unem-
ployment rates, social cohesion, access to health-
care, healthcare utilization, rates of smoking, rates of 
asthma, and rates of chronic disease. 

	� Information related to baseline health status might 
also include information on susceptible popula-
tions within the community (e.g., UOGD workers and 
their households, low-income households, children, 
or older individuals, as well as federally recognized 
American Indian tribes and Alaskan Native entities).

•	 What is the baseline status of the identified impacts that 
will be assessed? 

•	 What information or data needed to establish the baseline 
assessment is missing?

	� Can the information gaps be filled using surveys or 
community sources of knowledge? 

POTENTIAL METHODS

•	 Local, state, and federal publicly available data 

•	 Statistical models

•	 Government, nonprofit, or research institution reports or 
white papers

•	 Data collection, including environmental sampling, sur-
veys, and remote sensing

•	 Local, community, and industry data sources or data col-
lection

	� Concept mapping

	� Participatory research methods, such as participatory 
GIS, photovoice, community, or crowd-sourced local 
science data

	� Oral histories, local news archives, and local history 
archives

	� Ethnographic interviews and observations

•	 Community health surveys

•	 Prior community, government, industry, or other assess-
ments

ii. Assess Cumulative Impacts

After baseline information for the CI assessment is estab-
lished, the assessment includes analysis of trends in the 

prioritized impacts over time and analysis of cumulative 
impacts. There is no standardized approach for how cumula-
tive impacts should be analyzed. In practice, analysis of cumu-
lative impacts is often determined by the prevailing decision 
context. For example, consideration of cumulative impacts as 
part of permitting processes within some states requires the use 
of prescribed guidance and a method (e.g., the use of a spe-
cific screening tool to comply with Massachusetts and New 
Jersey processes) (N.J.A.C. 7:1C; 310 C.M.R 7.02(14)). Analysis 
of cumulative impacts may also include the use of screening 
tools to visualize and map metrics for the prioritized impacts. 
Such tools generally include either the use of an index-based 
approach — such as a single scoring approach that combines 
values for metrics into a single score to represent overall cumu-
lative impact — or a matrix approach that keeps categories of 
metrics separate and distinct to be evaluated using thresholds 
or criteria (as discussed in the following section, Significance 
of Cumulative Impacts). Index-based approaches typically 
include weighting among the prioritized impacts or groups of 
impacts (e.g., natural environment, socioeconomic, psychoso-
cial, and spiritual). Other approaches include exposure mod-
eling, statistical modeling, qualitative methods, or the use of 
mixed methods. Analysis of cumulative impacts can include 
a comparison of impacts using reference cases (e.g., compar-
ison of prioritized impacts to those in a non-UOGD community 
or comparison of prioritized impacts at baseline with changes 
over time in a UOGD community). A survey of various ana-
lytical methods can be found in Rish and colleagues (2024) 
and US EPA (2016; 2023; 2024). Although we are not aware of 
examples of the use of artificial intelligence (AI) in the assess-
ment of cumulative impacts, AI has the potential to facilitate 
analysis of exposures and impacts.

Depending on the approach chosen, the analysis phase often 
builds on the initial consideration of identified relationships 
between and among impacts that was begun in the scoping 
phase and often includes consideration of additive, multipli-
cative, synergistic, or antagonistic relationships among the pri-
oritized impacts, including potential interactions within media 
(e.g., multiple chemicals in the air) and across media (e.g., air, 
water, and soil). Other considerations include how to assess 
the relationship among adverse and beneficial impacts, as well 
as how other intrinsic or extrinsic characteristics at the indi-
vidual or community level might modify these relationships 
or interactions. Other elements for the analysis phase often 
include evaluating future changes to the prioritized impacts 
(within the temporal boundaries identified in the scoping 
phase) or assessing uncertainty associated with the analysis 
of cumulative impacts (e.g., uncertainty associated with future 
scenarios, uncertainty associated with modeling exposure, and 
uncertainty associated with different baseline assumptions). 

GUIDING QUESTIONS

•	 Does the decision context for the CI assessment prescribe 
analytical methods for assessing cumulative impacts?
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•	 What approach is most appropriate for analyzing cumula-
tive impacts in the community, given the decision context 
(i.e., a single quantitative measure of cumulative impact, 
some quantitative measure of exposure, a spatial mapping 
of metrics, or a comparison of impacts across communities)? 

	� What resources (e.g., information, data, time, exper-
tise, labor, and money) are available for conducting 
the analysis?

	� Is there interest in determining cumulative impacts 
relative to a point of temporal or geographic point of 
reference that is not experiencing UOGD activity? (If 
so, baseline information should also be collected for 
this point of reference.)

	� Is there interest in including an assessment of future 
changes in the prioritized impacts?

•	 How might metrics associated with the prioritized impacts 
interact with one another? 

•	 What methods are available and appropriate to assess 
interactions between and among impacts? What methods 
are available and appropriate to assess tradeoffs between 
adverse and beneficial impacts?

•	 How might baseline community characteristics modify the 
prioritized impacts and the relationships among impacts? 

•	 Is it appropriate to include an evaluation of uncertainty in 
the CI assessment? (This question might be determined by 
the decision context and approach chosen.)

•	 What analytical approach would lend itself to identifying 
and successfully implementing management strategies for 
cumulative impacts in the assessment?

POTENTIAL METHODS15 

•	 Spatial analysis and mapping

•	 Index-based methods

•	 Matrix-based methods

•	 Exposure modeling

•	 Statistical models

•	 Comparative analysis

•	 Cost-benefit and other economic analyses

•	 Simulation modeling

•	 Meta-analysis

Baseline Assessment in the Denver-Julesburg Region of Colorado, the Marcellus 
Region of Pennsylvania, and the Permian Region of New Mexico

Denver-Julesburg Region of Colorado
Specific to the UOGD context, the Colorado Energy and 
Carbon Management Commission (ECMC) produced both 
an initial and updated report with what was termed baseline 
information to support ongoing evaluation and assessment 
of potential cumulative impacts as required under Rule 904 
(ECMC 2024b; COGC 2023). The reports evaluated data 
for oil and gas development plans and associated oil and 
gas locations that had been approved in 2022, including 
information on water quality, land use, wildlife, air quality, and 

trends in greenhouse gas emissions and ozone concentrations 
(Colorado Oil and Gas Conservation Commission 2023; 
ECMC 2024b). Those data, as well as other data available 
from Colorado EnviroScreen and any community- or industry-
provided information, might be too recent for appropriately 
informing the baseline assessment. However, depending on the 
time frame selected to reflect baseline conditions, the data 
sources might potentially be queried for the years of interest 
to help inform the baseline assessment (CDPHE 2024).

Marcellus Region of Pennsylvania 
Although no baseline assessments specific to the UOGD 
context are available for the Marcellus region, the US 
Geological Survey (USGS) has conducted baseline assessments 
of groundwater quality across several UOGD counties in 
Pennsylvania (USGS 2020) that could be useful in assessing 
baseline conditions for a CI assessment. The USGS assessments 
seek to evaluate the constituents in groundwater and 

establish data that can be used to analyze the impacts of 
UOGD in a county (e.g., Senior and Cravota III 2017). As 
in Colorado, PennEnviroScreen provides another publicly 
available tool for which data inputs could be helpful to find 
appropriate data to inform baseline assessment (PA DEP 
2023b). Multisectoral data-sharing partnerships are another 
option to assemble data to inform the baseline assessment.

Permian Region of New Mexico
Additionally, no baseline assessments specific to the 
UOGD context are available for the Permian region in 
New Mexico. However, the NMED provides a data catalog 
that includes information to understand water quality, the 
location of industrial sites, and existing permitting across 
the state, which can be used to inform baseline assessments 
(NMED 2018). In addition, NMED’s OpenEnviroMap 

allows users to visualize the distribution of industrial 
sites, environmental resources, and information on water 
quality at different geographic scales and yearly intervals 
(NMED 2025). Data assembled through collaboration 
across sectors and assessment participants, as described for 
Colorado and Pennsylvania, are likely to provide the most 
comprehensive information to inform baseline assessments. 



 18

Roadmap to Health: Assessing Adverse and Beneficial Environmental, Social, and Economic Cumulative Exposures  

•	 Research triangulation 

•	 Scenario analysis

•	 Network analysis

•	 Qualitative modeling

iii. Significance of Cumulative Impacts

The analysis phase of a CI assessment also includes some 
determination of the significance of the cumulative impacts 
analyzed. Again, the significance of cumulative impacts in the 
CI assessment is often determined by the prevailing decision 
context. The significance of cumulative impacts can be deter-
mined using limits or thresholds, it can be based on subjective 
factors, or it can be some combination of these approaches. Gen-
erally, this step has been cited as one of the most challenging 
phases in CI assessment because, regardless of the approach 
chosen, significance determinations are often decided using 
a value judgment, and what constitutes significant, unreason-
able, or cumulative is a normative question subject to debate 

(Baptista et al. 2022). Index-based approaches typically use 
thresholds that are based on relative measures, such as percen-
tiles, to determine the significance of cumulative impacts. For 
example, California’s CalEnviroScreen tool designates census 
tracts with cumulative scores ≥75th percentile (which is cal-
culated using a relative ranking) as tracts that experience high 
economic, health, and environmental burdens (i.e., cumula-
tive impacts) and thus are eligible for certain funding. Another 
method might include assigning thresholds based on multiple 
percentiles for groups of metrics (Zeise and Blumenfeld 2021). 
In addition, thresholds might be assigned using relative rank-
ings of metrics between geographic locations (e.g., comparing 
cumulative impacts for UOGD versus a non-UOGD commu-
nity). 

To help inform a CI assessment decision, a threshold based 
on a relative ranking alone might be useful in determining cer-
tain permitting decisions or might need to be considered along-
side limits and thresholds for categories of impacts. However, 
it is important to note that screening tools have limitations that 
might preclude their use in certain regulatory or permitting 

Analysis of Cumulative Impacts in the Denver-Julesburg Region, Colorado; the 
Marcellus Region, Pennsylvania; and the Permian Region, New Mexico

Although multiple research articles and other publications 
have documented a range of potential environmental, social, 
economic, and community impacts of UOGD across the 
study locations in this roadmap (see Appendix A, Table A-1), 
there are only a few instances in which cumulative impacts 
are analyzed. These examples largely consist of environmental 
assessments or environmental impact statements as required 
under NEPA related to oil and gas activities in these regions 
more broadly (i.e., not specifically focused on the oil and gas 
basins noted above). A recent environmental impact statement 
(EIS) published by the Bureau of Land Management (BLM) 
for the Big Game Habitat Conservation for Oil and Gas 
Management in Colorado plan includes a generalized analysis 
of cumulative impacts that broadly relied on a comparison 
of baseline characteristics in the environment with expected 
impacts of alternatives or other actions in the same geographic 
area (where other actions include oil and gas development) 
(US BLM 2024b). Analysis of cumulative impacts was provided 
for each resource category (physical environment, biological 
resources, and social and economic systems) that generally 
relied on qualitative comparative and scenario analysis using 
historical and projected data on trends of resources within each 
resource category, although it appeared that screening tools 
were also used. Similarly, a recent environmental assessment 
published by BLM for the review of the permit applications to 
drill in Eddy County, New Mexico, also employed comparative 
and scenario analysis (primarily qualitative) that used historical 
and projected data on trends of specific impacts on air quality, 
water quality, greenhouse gas emissions, and community 
characteristics (US BLM 2024a). In this analysis, cumulative 
impacts were considered for each impact individually. 

Other studies examine multiple, rather than cumulative, 

impacts in UOGD contexts across broader regions 
encompassing our study locations. One example describes an 
analytical approach to evaluating the intersection of UOGD 
activity with food and water systems in Colorado (Malin 
2025). Another example is a study by Mayfield and colleagues 
(2019), which evaluates the impacts of the shale gas boom 
in the Appalachian Basin (including the Marcellus region) on 
air quality, greenhouse gas emissions, and employment. That 
analysis used several modeling methods, including statistical 
regression-based models, air quality models, and emissions 
models. Impacts were estimated for each impact category 
separately, and tradeoffs between impacts were assessed 
using a traditional cost-benefit analysis. Another study that 
focused on large emitting facilities in New Mexico (including 
oil and gas activities in the Permian region) analyzes the effect 
of these facilities on air quality, greenhouse gas emissions, and 
the characteristics of communities living near those facilities 
(Pacyniak et al. 2023). That analysis largely used spatial analysis 
alongside index-based methods to visualize multiple impacts 
across New Mexico and in specific counties (CDC n.d.).

Beyond UOGD, there are other examples of analytical methods 
used to assess cumulative impacts to inform a decision. In 
Minnesota, the Minnesota Pollution Control Agency has 
required consideration of cumulative impacts in what is termed 
“cumulative levels and effects” analyses for air permitting 
processes in certain parts of southern Minneapolis (Minn. Stat. 
116.07 subd.4a). This method combines the use of criteria air 
pollutant and air toxics dispersion modeling with identification 
of human health outcomes related to air pollutants and 
air toxics and collection and quantitative and qualitative 
description of environmental health data in the community 
along with comparisons to other communities (MPCA 2013).
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processes. For example, the metrics used in many screening 
tools are based on area-level proxies rather than direct mea-
sures. Data sources and temporal scales used for metrics in 
screening tools are often inconsistent. Existing guidance on 
CI assessment, as summarized in Ehrlich and Ross (2015), 
describes determinations of significance of cumulative impacts 
that are based on a comparison of impacts with some limit or 
threshold of acceptable change. 

GUIDING QUESTIONS

•	 Does the decision context for the CI assessment prescribe 
analytical methods for assessing the significance of cumu-
lative impacts?

•	 Does the analytical approach chosen in the CI assessment 
lend itself to quantitative or qualitative determinations of 
thresholds or significance of cumulative impacts?

•	 Does current literature describe thresholds that are relevant 
for the community? 

POTENTIAL METHODS

•	 Literature review 

•	 Inter- and multidisciplinary conferences or symposia

•	 Professional judgment among assessment participants

•	 Expert opinion, including consensus methods and Delphi 
surveys 

iv. Summary of Analysis

A completed analysis phase in a CI assessment includes a 
baseline assessment of population health and the prioritized 
impacts, a mutually agreed-on analytical method for assessing 
cumulative impacts and trends in the prioritized impacts, and 
some discussion and determination of the significance of the 
cumulative impacts in the assessment. The results of the anal-
ysis phase will depend on the decision context for the CI assess-
ment and the method chosen to assess cumulative impacts. 

D. PHASE 4 — MANAGEMENT

The management phase of a CI assessment includes iden-
tifying and implementing potential strategies for preventing, 
minimizing, or monitoring cumulative impacts identified to 
maximize beneficial impacts while minimizing adverse ones. 
Management of cumulative impacts generally follows the 
impact mitigation hierarchy approach (IAIA 2013), which con-
sists of a series of steps aimed at minimizing adverse impacts. 
The management phase is informed by the results of the anal-
ysis phase, particularly the identified significance of cumula-
tive impacts. For example, in the context of setback distances, 
a strategy to minimize cumulative impacts can take the form 
of changing the setback distance between residential neigh-
borhoods and UOGD. Management of cumulative impacts can 

Significance of Cumulative Impacts in the Denver-Julesburg Region,  
Colorado; the Marcellus Region, Pennsylvania; and the  

Permian Region, New Mexico
Although determining the significance of cumulative impacts 
is largely subjective and ultimately based on determinations 
of acceptable change, both Colorado and Pennsylvania have 
state-specific screening tools that can provide useful examples 
for identifying potential thresholds to assess the significance 
of cumulative impacts. Both tools identify thresholds 
based on relative rankings. Colorado’s EnviroScreen tool 
provides a measure of cumulative environmental, health, 
and socioeconomic burden and can be used to identify 
communities meeting the cumulative impacts criteria of a 
disproportionately impacted community as defined under 
Colorado law (C.R.S. § 24-4-109(2)(b)(II)). This criterion 
defines a threshold for experiencing cumulative impacts as 
a Colorado EnviroScreen score >80th percentile (CDPHE 
2024). Colorado’s recently adopted Cumulative Impacts and 
Enhanced Systems and Practices Rulemaking (2 C.C.R. § 
404-1) does not similarly designate a threshold for cumulative 
impacts but does require that a cumulative impacts analysis 
include a copy of the most recent Colorado EnviroScreen data 

for the oil and gas location. Pennsylvania’s PennEnviroScreen 
tool also provides a measure of cumulative burden or “undue 
environmental burden” on certain communities and can be 
used to identify vulnerable groups as defined under the state 
regulations, defined as communities with a PennEnviroScreen 
score ≥80th percentile (PA DEP 2023a; PA DEP 2023b). 

New Mexico does not currently have any similar index-based 
tools to quantify cumulative burdens in a community. However, 
in New Mexico, the Albuquerque Bernalillo County Air Quality 
Control Board adopted a regulation in 2023 requiring stronger 
air quality analysis and control technologies for sources of 
criteria and ambient air pollutants located in or near an 
overburdened community. In this regulation, overburdened 
communities are the 20% of census block groups in the 
county that experience the highest cumulative environmental 
and public health burden as identified using the New Mexico 
Department of Health’s New Mexico Indicator-Based 
Information System (20.11.72 N.M.A.C; NM Health 2022).
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include strategies to address cumulative impacts even if the sig-
nificance determination of impacts is not entirely conclusive. 

As described in other sections of this roadmap, the manage-
ment phase of a CI assessment might or might not be applicable 
depending on the decision context for the assessment, and it 
can be iterative with the analysis phase. For example, adap-
tive management is one approach that can be used to address 
cumulative impacts, which involves an iterative learning pro-
cess, including planning, implementing, monitoring, evalu-
ating, and adjusting management strategies. 

GUIDING QUESTIONS

•	 Does the decision context for the CI assessment prescribe 
inclusion of management strategies for cumulative impacts?

•	 What is the outcome of the CI analysis phase (i.e., have sig-
nificant cumulative impacts been identified)? What strate-
gies might maximize beneficial impacts while minimizing 
adverse impacts identified in the scoping and analysis 
phases that contribute to overall cumulative impacts?

•	 What strategies are available to prevent, minimize, or mon-
itor cumulative impacts identified in the analysis phase? 

•	 How will management strategies themselves be monitored 
and evaluated?

POTENTIAL MANAGEMENT APPROACHES

•	 Use of mitigation hierarchy 

•	 Adaptive management approaches

•	 Planning approaches such as multicriteria decision analysis

•	 Community-based management approaches

•	 Co-management agreements

•	 Planning approaches such as multicriteria decision analysis

•	 Long-term moderation and monitoring 

•	 Integrated approaches such as interorganizational or inter-
agency collaboration

POTENTIAL MANAGEMENT STRATEGIES

•	 Prevention measures

•	 Minimization measures

•	 Monitoring measures

•	 Restoration measures

•	 Offsetting measures

Management of Cumulative Impacts in the Denver-Julesburg Region, Colorado; 
the Marcellus Region, Pennsylvania; and the Permian Region, New Mexico

The 2024 Colorado Cumulative Impacts and Enhanced 
Systems and Practices Rulemaking provides for the Colorado 
Department of Public Health & Environment to recommend 
monitoring requirements or best management practices to 
address cumulative impacts as part of permit renewals or 
approvals (2 C.C.R. § 404-1). In addition, the rulemaking 
requires that permit applicants include a description of 
planned measures to mitigate adverse impacts in both 
the preproduction and production phases of operations. 
The cumulative impact analysis section of this rule also 
requires measures that the operator plans to take to “avoid, 
minimize, or mitigate adverse cumulative impacts.” It also 
requires descriptions for impacts to resources, including best 
management practices or enhanced systems and practices. 

Draft legislation introduced in 2023 in the Pennsylvania 
Senate related to permitting in certain areas proposes 
that the Pennsylvania Department of Environmental 
Protection can require additional conditions or mitigation 
measures in approving permits based on cumulative 

environmental impacts (S.B. 888). The type of monitoring, 
mitigation, or management strategy that can be required 
or recommended in the examples of either CO or PA 
is not described in the related documentation. 

In Albuquerque-Bernalillo County, New Mexico, permitting 
requirements established in 2023 related to sources of 
air pollution that are located, or proposed to be located, 
near areas defined by the state as experiencing the highest 
cumulative environmental and public health burden are 
required to apply Best Available Control Technology (BACT) 
to manage and mitigate impacts (20.11.72 N.M.A.C). Another 
regulation related to permitting solid waste facilities in 
areas defined as vulnerable (by the regulation) includes 
provisions for a community impact assessment, wherein 
applicants should describe mitigation measures to manage 
the facility’s expected impacts on multiple resources, 
including historical and cultural resources, visual and scenic 
resources, air quality, socioeconomics, noise, transportation, 
and public and occupational health (20.9.3 N.M.A.C.).
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ENDNOTES

1. See Section I.G. Key Concepts and Terminology; we define 
CI assessment as a process of evaluating both quantitative and 
qualitative data representing cumulative impacts to inform a 
decision, including strategies to prevent, minimize, or modify 
cumulative impacts to the extent possible.
2. UOGD refers to the development and production of oil and 
natural gas as practiced starting around the beginning of the 
21st century through multistage hydraulic fracturing in hori-
zontal wells. UOGD processes occur on and off the well pad 
and include the following:

	 Field development: exploration, site preparation, ver-
tical and horizontal drilling, well completion (casing and 
cementing, perforating, acidizing, hydraulic fracturing, 
flowback, and well testing) in preparation for production 
and management of wastes. 

	 Production operations: extraction, gathering, processing, 
and field compression of gas; condensates; management of 
produced water and wastes; and construction and opera-
tion of field production facilities. 

	 Postproduction: well closure and land reclamation.

3. See Box 2: Defining Cumulative Impacts, Cumulative 
Risk, and Cumulative Effects in https://www.heienergy.org/
publication/cumulative-impact-assessment-unconvention-
al-oil-and-gas-development-communities.
4. https://www.heienergy.org/publication/cumulative-im-
pact-assessment-unconventional-oil-and-gas-develop-
ment-communities 
5. Between 2014 and 2018, HEI Energy hosted research 
planning workshops in Colorado, Pennsylvania, Texas, and 
West Virginia during which recommendations were solicited 
for research about community exposures and health effects 
associated with UOGD. HEI Energy heard a need to (1) capture 
differences in potential exposures across UOGD operations, 
regions, and populations; (2) distinguish potential UOGD 
exposures from other sources; (3) provide information that is 
actionable and involves partnerships from multiple sectors; 
and (4) understand how close is too close for people to live, 
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APPENDIX A 

Peer-Reviewed and Gray Literature About Potential Impacts on Populations 
Affected by UOGD in the United States and Canada

Table A-1. Peer-Reviewed and Gray Literature About Potential Impacts on Populations Affected by UOGD in the United 
States and Canadaa

Impacts

Study Locations

Denver-Julesburg Region, 
Colorado

Marcellus Region, 
Pennsylvania

Permian Region,  
New Mexico and Texas

Other Locations in the 
United States and Canada

Natural Environment 

Air ATSDR 2010; Alls-
house et al. 2019; Bah-
reini et al. 2018; Benedict 
et al. 2018, 2019; Chep-
tonui et al. 2023; Collett in 
press; Collett et al. 2016; 
CDPHE 2012, 2016, 2017c, 
2017b, 2017a, 2018a, 
2018c, 2018b; COGC 2023; 
Cushing et al. 2021; Dix 
et al. 2023; Eisele et al. 
2016; Esswein et al. 2013, 
2014; Evans and Helmig 
2017; Flocke et al. 2020; 
Franco et al. 2016; Franklin 
in press; Frazier 2009; 
Frischmon and Hannigan 
2024; Gilman et al. 2013; 
Halliday et al. 2016; Hei-
merl et al. 2023; Helmig 
et al. 2015, 2021; Holder 
et al. 2019; Ilonze et al. 
2024; Koss et al. 2017; Ku 
et al. 2024; Li et al. 2020; 
Lindaas et al. 2019; Lyu et 
al. 2020; Macey et al. 2014; 
Majid et al. 2017; McDuffie 
et al. 2016; McKenzie et al. 
2012, 2018; McMullin et 
al. 2018; Nsanzineza et al. 
2019; Oltmans et al. 2019, 
2021; Ortega et al. 2021; 
Peischl et al. 2018; Pétron 
et al. 2012; Pfister et al. 
2017; Pollack et al. 2021; 
Rodriguez et al. 2009; 
Rossabi et al. 2021; Silber-
stein et al. 2024; Swarthout 
et al. 2013; Thompson 
et al. 2014; Vigil 2015; 
Warner et al. 2013; Zara-
goza et al. 2017

ATSDR 2016b; Baek in 
review; Banan and Ger-
nand 2018; Barth-Naft-
ilan et al. 2018; Bonetti 
et al. 2023; Campa et al. 
2022; Chang et al. 2016; 
Chen et al. 2017; Cushing 
et al. 2021; Dennis et al. 
2022; DiGuilio et al. 2023; 
Fann et al. 2018; Gernand 
in review; Goetz et al. 
2017; Gradient Corporation 
2019; Hill and Ma 2017; 
Lewellyn et al. 2015; Li et 
al. 2020; Long et al. 2021; 
Macey et al. 2014; Maskrey 
et al. 2016; Mol et al. 2020; 
Ouyang et al. 2019; Orak 
and Pekney 2020; Pekney 
et al. 2018; PA DEP 2010, 
2018; Pennsylvania DOH 
2018; Reilly et al. 2015; 
Riddick et al. 2024; Roo-
hani et al. 2017; Rossabi 
and Helmig 2018; Rowan 
et al. 2012; Saint-Vincent 
et al. 2021; Skalak et al. 
2014; Steinzor et al. 2013; 
Swarthout et al. 2015; Van 
Sice et al. 2018; Warner et 
al. 2013; Wendt Hess et al. 
2019; Yan et al. 2017; Yang 
et al. 2024

Dix et al. 2020; Dix et al. 
2023; Eisenlord et al. 2018; 
Franklin; Heimerl et al. 
2023; Koss et al. 2017; 
Majid et al. 2016; Marsavin 
et al. 2024; Pan et al. 2023; 
Plant et al. 2024; Pollack 
et al. 2023; Radhakrishnan 
et al. 2023; Serrano et al. 
2023

Baek in review; Beauso-
leil et al. 2022; Black et 
al. 2021; Buse et al. 2019; 
COGC 2023; Dubé et al. 
2022; Franklin in press; 
Gernand in review; HEI 
Energy 2025b; HEI Energy 
Research Committee 2020; 
Hildebrandt Ruiz in press; 
Klasic et al. 2022; Mayer 
2017; Mayfield et al. 2019; 
NASEM 2003
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Table A-1. Peer-Reviewed and Gray Literature About Potential Impacts on Populations Affected by UOGD in the United 
States and Canadaa

Impacts

Study Locations

Denver-Julesburg Region, 
Colorado

Marcellus Region, 
Pennsylvania

Permian Region,  
New Mexico and Texas

Other Locations in the 
United States and Canada

Water Aakhus and Lewinski 
2017; Bonetti et al. 2023; 
Chambers et al. 2024; Chen 
et al. 2023; COGC, 2023; 
ECMC 2024; Gross et al. 
2013; Hladik et al. 2014; 
Jubb et al. 2024; Kanno 
and McCray 2021; Lackey 
et al. 2022; Li and Carlson 
2014; McDevitt et al. 2022; 
Nelson et al. 2015; Ryan 
in press; Sherwood et al. 
2016; Shores et al. 2017; 
Wen et al. 2021

Alawattegama et al. 2015; 
Agarwal et al. 2020; 
ATSDR 2016a; Bain et 
al. 2021; Baka in press; 
Bamberger et al. 2019; 
Banan and Gernand 2021; 
Blondes et al. 2020; Boyer 
et al. 2012; Brown et al. 
2019; Bugher et al. 2024; 
Cantlay et al. 2019; Casey 
et al. 2015; Casey et al. 
2022; Chen et al. 2024; 
Clark et al. 2022; Cravotta 
et al. 2022; Darrah et al. 
2014; Drollette et al. 2015; 
Epuna et al. 2022; Esswein 
et al. 2013; Ferrar et al. 
2013; Frazier 2009; Grieve 
et al. 2018; Haines et al. 
2024; Hayes 2009; Hilden-
brand et al. 2020; Hladik 
et al. 2014; Jackson et al. 
2013; Johnson et al. 2015; 
Kingsbury et al. 2023; Knee 
and Masker 2019; Landis 
et al. 2016; Lewis et al. 
2016; Li et al. 2021, 2023; 
Low et al. 2016; Majid et 
al. 2017; Marza et al. 2022; 
McDevitt et al. 2022, 2024; 
McMahon et al. 2019; 
Molofsky et al. 2016; Ma 
et al. 2019, 2022, 2023; 
Niu et al. 2018; Osborn et 
al. 2011; Rathnayaka et al. 
2024; Rish and Pfau 2018; 
Shaheen et al. 2022, 2024; 
Olmstead 2013; Perry, 
2013; Saiers in review; 
Soriano et al. 2020, 2022, 
2023; States et al. 2013; 
Theodori and Podeschi 
2020; Torres et al. 2017; 
US EPA 2015; Warner et 
al. 2013; Wen et al. 2018, 
2019, 2021; Wickline and 
Hopkinson 2020; Wilson et 
al. 2012; Wilson et al. 2014; 
Woda et al. 2018; Xiong et 
al. 2022; Zhang et al. 2015; 
Ziemkiewicz et al. 2013

Bean et al. 2018; Chen et 
al. 2023a; Eisenlord et al. 
2018; Gardiner et al. 2020; 
Hildenbrand et al. 2016; 
Jiang et al. 2021; Jiang et 
al. 2022; Kashani et al. 
2024; Liden et al. 2022; 
Marza et al. 2022; MDe-
vitt et al. 2022; Nelson 
and Heo 2020; Nicot et 
al. 2023; Rodriguez et al. 
2020; Scanlon et al. 2022; 
Stemple et al. 2024; Tara-
zona et al. 2024; Thakur et 
al. 2022; Townsend et al. 
2021; Wang 2021

Beausoleil et al. 2022; 
Black et al. 2021; Buse 
et al. 2019; COGC 2023; 
Dubé et al. 2022; Hajat et 
al. 2020; HEI Energy 2025b; 
HEI Energy Research Com-
mittee 2020; Klasic et al. 
2022; Krupnick et al. 2017; 
Lawe et al. 2005; Mayer 
2017; NASEM 2003; Ryan 
in press; Saiers in review; 
Yap 2016
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Table A-1. Peer-Reviewed and Gray Literature About Potential Impacts on Populations Affected by UOGD in the United 
States and Canadaa

Impacts

Study Locations

Denver-Julesburg Region, 
Colorado

Marcellus Region, 
Pennsylvania

Permian Region,  
New Mexico and Texas

Other Locations in the 
United States and Canada

Greenhouse 
gases

Benedict et al. 2019; 
Cheadle et al. 2017; COGC 
2023; ECMC 2024; Evans 
and Helmig 2017; Flocke 
et al. 2020; Heimerl et al. 
2023; Ilonze et al. 2024; 
Lackey et al. 2022; Larson 
et al. 2018; Lindaas et 
al. 2019; Lyu et al. 2020; 
McDuffie et al. 2016; Nsan-
zineza et al. 2019; Olt-
mans et al. 2019; Ortega et 
al. 2021; Rodriguez et al. 
2009; Schade in review; 
Silberstein et al. 2024; 
Zaragoza et al. 2017

Chang et al. 2016; Dennis 
et al. 2022; DiGuilio et al. 
2023; Fann et al. 2018; 
Orak and Pekney 2020; 
Pekney et al. 2018; Riddick 
et al. 2024; Saint-Vincent et 
al. 2021; Wendt Hess et al. 
2019; Yang et al. 2024

Cardoso-Saldaña et 
al. 2023; Chen et al. 
2022; Chen et al. 2023b; 
Cusworth et al. 2021; Dan-
iels et al. 2023; Heimerl 
et al. 2023; Kunkel et al. 
2023; Opara et al. 2024; 
Townsend et al. 2021; 
Schade in review; Stokes et 
al. 2022; Varon et al. 2023; 
Veefkind et al. 2023; Yu et 
al. 2022

Black et al. 2021; COGC 
2023; HEI Energy 2025b; 
Klasic et al. 2022; May-
field et al. 2019; Schade in 
review

Noise Malin 2020; Collett in 
press

Theodori and Podeschi 
2020 Richburg and Slagley 
2018

Not documented in the 
reviewed literature

Adgate et al. 2014; Black 
et al. 2021; Buse et al. 
2019; HEI Energy 2025b; 
HEI Energy Research Com-
mittee 2020; Hemmer-
ling et al. 2021; Klasic et 
al. 2022

Environmental 
degradation

Malin 2020 Brasier et al. 2011 Elser 2020; Kashani et al. 
2024

Adgate et al. 2014; Beauso-
leil et al. 2022; Black et al. 
2021; Dubé et al. 2022; HEI 
Energy 2025b; Hemmer-
ling et al. 2021; Klasic et al. 
2022; Krupnick et al. 2017; 
Mayer 2017; NASEM 2003

Accidents, 
spills, leaks

Shores et al. 2017; Kanno 
and McCray 2021

Theodori and Podeschi 
2020

Adgate et al. 2014; HEI 
2015; HEI Energy 2025b; 
Hemmerling et al. 2021; 
NASEM 2003 

Built Environment

Transportation 
and infrastruc-
ture

Haggerty et al. 2018 Brasier et al. 2011; Perry et 
al. 2012; Perry, 2013; Theo-
dori and Podeschi 2020

Adgate et al. 2014; Buse 
et al. 2019; Klasic et al. 
2022; Krupnick et al. 2017; 
Mayer 2017; NASEM 2003

Socioeconomic

Employment Haggerty et al. 2018; Malin 
2020; Weber 2012

Perry, 2013; Theodori and 
Podeschi 2020

Elser 2020; Figgins et al. 
2021; Ross et al. 2024; 
Wang 2020

Black et al. 2021; Buse et 
al. 2019; Klasic et al. 2022; 
Krupnick et al. 2017; May-
field et al. 2019

continued



 30

Roadmap to Health: Assessing Adverse and Beneficial Environmental, Social, and Economic Cumulative Exposures  

Table A-1. Peer-Reviewed and Gray Literature About Potential Impacts on Populations Affected by UOGD in the United 
States and Canadaa

Impacts

Study Locations

Denver-Julesburg Region, 
Colorado

Marcellus Region, 
Pennsylvania

Permian Region,  
New Mexico and Texas

Other Locations in the 
United States and Canada

Income Haggerty et al. 2018; Malin 
2020; Malin et al. 2023a

Brasier et al. 2011; Perry et 
al. 2012; Perry, 2013; Theo-
dori and Podeschi 2020

Ross et al. 2024; Wang 
2020

Black et al. 2021; Buse et 
al. 2019; Haggerty et al. 
2018; Klasic et al. 2022; 
Krupnick et al. 2017; 
NASEM 2003

Cost of living Haggerty et al. 2018 Brasier et al. 2011; Perry, 
2013; Theodori and 
Podeschi 2020

Figgins et al. 2021 Black et al. 2021; Buse et 
al. 2019; Haggerty et al. 
2018; Klasic et al. 2022; 
Krupnick et al. 2017

Public revenue 
and local gov-
ernment ser-
vices

Newell and Raimi 2018 Brasier et al. 2011; Perry, 
2013

Prest et al. 2025; Wang 
2018

Klasic et al. 2022

Health Outcomes

General self-
rated health, 
quality of life 
outcomes

Mayer et al. 2020 Perry 2012; Perry 2013; 
Steinzor et al. 2013

Adgate et al. 2014; Aker et 
al. 2024; Black et al. 2021; 
Boslett et al. 2021; HEI 
Energy 2025b; HEI Energy 
Research Committee 2019; 
Klasic et al. 2022; Krup-
nick et al. 2017; Mayer 
2017; Willis et al. 2024

Morbidity and 
mortality out-
comes

CDPHE 2012, 2016, 2017c, 
2017b, 2017a, 2018a, 
2018c, 2018b; Holder et 
al. 2019; McKenzie et al. 
2012; McKenzie et al. 2018; 
McMullin et al. 2018 

ATSDR 2016a, 2016b; Brown et al. 2019; Gradient Cor-
poration 2019; Long et al. 2021; PA DOH 2018; Rish et 
al. 2018 

Aker et al. 2022; Aker et 
al. 2024; Black et al. 2021; 
Casey et al. 2019; Deziel et 
al. 2020; HEI Energy 2025b; 
HEI Energy Research Com-
mittee 2019; Klasic et al. 
2022; Krupnick et al. 2017; 
Li et al. 2022; Mayer 2017; 
Scheule et al. 2022

Psychosocial and Spiritual

Psychosocial 
outcomes

Malin 2020; Malin and 
Kallman 2024

Perry et al. 2012; Perry 
2013; Theodori and 
Podeschi 2020

Elser 2020 Adgate et al. 2014; Buse et 
al. 2019; Casey et al. 2019; 
Klasic et al. 2022; Willis et 
al. 2024

Powerlessness Marlin-Tackie et al. 2020; 
Mckenzie et al. 2016; 
Malin et al. 2019; Malin 
2020

 George 2019; Jalbert et al. 
2019; Malin et al. 2019; 
Malin and Demaster 2016; 
Perry et al. 2012

Mayer 2017

Identity and 
values

Haggerty et al. 2018 Brasier et al. 2011; Perry et 
al. 2012; Perry, 2013; Theo-
dori and Podeschi 2020

Ross et al. 2024 Adgate et al. 2014; Buse 
et al. 2019; Haggerty et al. 
2018; Klasic et al. 2022; 
Mayer 2017

Spiritual Buse et al. 2019
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APPENDIX B 

The health of people living in any commu-
nity can be affected by an array of environ-
mental, social, and economic factors. Numerous 
studies throughout the scientific literature doc-
ument how exposures associated with one or 
even a few factors might affect human health. 
The same is not true for understanding how 
integrated (or cumulative) exposure to all fac-
tors can affect health. This checklist forms part 
of a larger roadmap that contributes to ongoing 
efforts to advance the practice of assessing 
cumulative exposures and their impacts in the 
United States using a tool referred to as cumu-
lative impact assessment (CI assessment). It 
provides considerations that can inform a CI 
assessment process (illustrated on the next 
page), alongside example contexts for how 
these considerations might be applied in real-
world communities. CI assessments can help to reframe scientific and policy discussions so that 
they encompass the full spectrum of factors that can affect human health and, in so doing, position 
decision-makers to capitalize on beneficial impacts while avoiding adverse impacts. Because CI 
assessment processes are highly context-specific, this checklist and the roadmap are not intended 
to provide prescriptive guidance on the implementation of a CI assessment.

The format of this checklist reflects a four-phase, generic process for CI assessment described 
in the roadmap (Figure 1).

We ask anyone who elects to use the roadmap and checklist to share your experience and any 
ideas for improving these resources by emailing us at energy@healtheffects.org.

✔ Checklist for Cumulative Impact Assessment

mailto:energy@healtheffects.org
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DECISION CONTEXT: WHAT QUESTION OR ISSUE IS BEING ADDRESSED?

The analytical approach and methods used in a CI assess-
ment are shaped by the context in which it is being applied. 
CI assessment can inform regulatory decisions, and it can also 
be used for nonregulatory, research, or educational purposes.

1.	 What is the decision context for the CI assessment?

	� Federal, state, or local regulation

	� Nonregulatory, research, or educational project 

	� Other

Figure 1. Overview of the four-phase, generic process for CI assessment described in this roadmap, 
including communication and engagement throughout the CI assessment process (large arrow) and 
the potential for iteration between phases (shown using thin arrows).
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PHASE 1. DEVELOPING PARTNERSHIPS AND COMMUNITY ENGAGEMENT: WHO SHOULD BE INVOLVED?

Figure 1. Overview of the four-phase, generic process for CI assessment described in this roadmap, 
including communication and engagement throughout the CI assessment process (large arrow) and 
the potential for iteration between phases (shown using thin arrows).

ManagementAnalysis

A key component of the CI assessment process is building 
partnerships and engaging with people in communities across 
sectors who are interested in or somehow affected by the deci-
sion or activity that has initiated the assessment process. Con-
tinued communication and engagement throughout and after 
the CI assessment process are critical aspects of this phase.

2.	 Who will lead and who will be involved in the assessment 
process?

	� If the decision context is regulatory, recruit key part-
ners that the regulation requires for participation in 
the CI assessment process; these might include gov-
ernment officials, industry representatives, research 
or academic partners, and community members.

	� Identify individuals with the following expertise 
and experience for the project team: policy, industry, 
research and analysis, environmental health, and 
community voices.

	� Identify other individuals who want to participate in 
the assessment process, who have been involved in 
prior research or assessment efforts, and who have 
not been involved in prior efforts.

3.	 How will participants be involved in the assessment pro-
cess?

	� Define roles and responsibilities for all assessment 
participants, which might include project manage-
ment, data collection, research and analysis, advi-
sory, oversight, and communication.

	� Define roles and responsibilities based on interest, 
expertise, and potential impact on the project imple-
mentation and outcomes.

	� Define how participants will be compensated, how 
their information will be protected, and how the 
assessment process will be facilitated.

4.	 How will information be communicated throughout and 
after the assessment process?

	� Define how all aspects of the assessment process will 
be communicated among assessment participants.

5.	 How will broader engagement occur?

	� Define the general public and identify how the public 
will be involved in the assessment process.

	� Define how all aspects of the assessment process, 
including results, will be communicated to the 
public.
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PHASE 2. SCOPING: WHAT IS THE FULL SCOPE OF EXPOSURES AND FACTORS AND WHAT IS MOST 
IMPORTANT TO INCLUDE IN THE ASSESSMENT?

The scoping phase of a CI assessment is intended to both 
explore and set parameters and boundaries for the breadth 
of the assessment. It consists of identifying and prioritizing 
which impacts to evaluate in the assessment, determining geo-
graphic and temporal boundaries for the assessment, and iden-
tifying other related factors that might interact with or affect 
the impacts being assessed.

6.	 Identify potential impacts

	� If the decision context is regulatory, determine and 
identify what categories of impacts are required to 
be assessed (e.g., natural environment, built environ-
ment, socioeconomic, health, psychosocial, spiritual, 
and community-level).

	� Define how potential impacts will be identified. 
Methods can include a literature review, surveys, 
focus groups, group discussions, multisector forums, 
or some other mechanism.

	� Identify and list potential impacts for an array of fac-
tors that might affect human health and well-being 
of individuals in an affected population; these might 
include natural environment, built environment, 
socioeconomic, health, psychosocial, spiritual, and 
community-level impacts.

	� Identify and list what exposures and factors are asso-
ciated with the identified impacts.

	� Ensure that all assessment participants have been 
consulted on what potential impacts to consider.

	� If appropriate, ensure that the general public has had 
an opportunity to identify potential impacts for con-
sideration in the assessment.

7.	 Prioritize potential impacts

	� Identify potential impacts that are of value to the 
community; consult community member assessment 
participants for the best way to survey or speak with 
other community members.

	� Identify potential relationships or potential interac-
tions among and between impacts; consult all assess-
ment participants.

	� Identify what data or information is available on 
identified impacts; consult government partners, 
industry partners, and research or academic partners 
for resources.

	� Identify the temporal scale and spatial scale of avail-
able data and information.

	� Determine whether any critical information gaps 
exist.	

	� Based on available information, impacts of highest 
concern, time, labor, and resources, select a final set 
of impacts and what metrics will be used to assess 
those impacts in the assessment; endeavor for con-
sensus among all assessment participants.

8.	 Determine geographic and temporal boundaries

	� Determine whether the decision context specifies the 
geographic and temporal scope of the assessment.

	� Determine the spatial extent of activities being 
assessed and whether prioritized impacts extend 
beyond these boundaries; consult government part-
ners, industry partners, community members, and 
research or academic partners.

	� Determine spatial scale of assessment (e.g., coun-
ties, census tracts, census blocks), which will partly 
depend on data and information identified in 7.

	� Determine what time frame should constitute the 
baseline for the assessment and what time frame 
should constitute the assessment of impacts into the 
future; consult all assessment participants. This deci-
sion will likely depend on data and information iden-
tified in 7.

9.	 Identify other related factors

	� Identify other industries, sources, or activities that 
are located within the geographic scope of the assess-
ment that might affect, or are the same as, one or more 
prioritized impacts (such as emissions of air pollut-
ants or greenhouse gases). Consult all assessment par-
ticipants.

	� Determine whether other assessments have been per-
formed for other nearby sources of concern; consult 
government partners and research or academic part-
ners, and consider conducting a literature review.

	� Identify terrain, weather, climatic, or atmospheric 
conditions within the geographic scope of the assess-
ment that might affect prioritized impacts; consult all 
assessment participants.
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PHASE 3. ANALYSIS: WHAT ANALYTICAL METHODS ARE AVAILABLE AND MOST APPROPRIATE?

The analysis phase of a CI assessment builds and expands 
on the results of the scoping phase. It includes additional con-
sideration of relationships and interactions among and between 
impacts and their associated exposures and factors begun in 
the scoping phase. The analysis phase includes an assessment 
of baseline conditions of the population in which the CI 
assessment is being conducted, an assessment of cumulative 
impacts, and a determination of the significance of cumula-
tive impacts.

10.	Assess baseline

	� Based on the temporal boundaries identified in item 
8, identify time period for the collection of baseline 
information.

	� Collect baseline information on prioritized impacts 
within the geographies determined in item 8, which 
might include data on water quality, air quality, 
health outcomes, and employment rates.

	� If additional information is identified as missing in 
item 6, collect data on missing information. Collec-
tion methods might include environmental sam-
pling, remote sensing, surveys, focus groups, or eth-
nographic research methods.

	� Collect data on baseline health status of the commu-
nity, which might include rates of chronic disease, 
asthma, quality of life metrics, and healthcare utili-
zation. Data collection is likely to be conducted by 
government partners or other research and academic 
partners.

11.	Assess cumulative impacts

	� If the decision context is regulatory, identify whether 
certain analytical or other methods are prescribed to 
assess cumulative impacts.

	� Consult all assessment participants to determine 
appropriate methods for analysis; these might 
include spatial analysis, statistical modeling, expo-
sure assessment, or scenario modeling.

	 Considerations for determining appropriate analytical 
methods (Subsection #11):

	� Identify resources available for conducting analysis 
and modify analytical methodology as needed.

	� Determine how the assessment of future changes in 
prioritized impacts will be conducted.

	� Determine how interaction among prioritized impacts 
will be assessed.

	� Determine how tradeoffs between beneficial and 
adverse impacts will be assessed.

	� Determine the appropriateness of including an eval-
uation of uncertainty for the assessment of cumula-
tive impacts.

	� Identify whether certain analytical methods are more 
relevant to identifying and successfully implementing 
management strategies for cumulative impacts.

	� Determine whether assessment of cumulative 
impacts will be evaluated among groups of priori-
tized impacts, or whether a single determination of 
cumulative impact is more appropriate.

	� Analyze cumulative impacts. Analysis likely to be 
conducted by government, industry, research, or aca-
demic partners.

12.	Determine the significance of cumulative impacts	

	� If the decision context is regulatory, identify whether 
thresholds or methods to determine the significance of 
cumulative impacts are prescribed in the regulation.

	� Determine if there are appropriate thresholds that 
would constitute significant cumulative impacts. 
Determination is likely to be a normative and sub-
jective process conducted in consultation with all 
assessment participants and might include a litera-
ture review, review of other impact assessments in 
the region, consultation among assessment partici-
pants and experts outside of assessment participants.

	� Evaluate whether cumulative impacts assessed in 
item 11 surpass the identified thresholds for the 
assessment.
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PHASE 4. MANAGEMENT: WHAT ARE THE OPTIONS FOR ADDRESSING THE OUTCOME OF THE 
ASSESSMENT?

The management phase of a CI assessment includes the 
identification and implementation of potential strategies for 
preventing, minimizing, and monitoring cumulative impacts. 
The management phase might include iteration with the anal-
ysis phase of a CI assessment. This phase might or might not 
be applicable depending on the decision context for the assess-
ment.

13.	Avoid, minimize, and monitor cumulative impacts

	� If the decision context is regulatory, determine what 
management strategies are required to address cumu-
lative impacts; consult all assessment participants. 
Implementation is likely to be conducted by industry 
partners alongside government, research, or aca-
demic partners.

	� Identify the outcome of the assessment and whether 
significant cumulative impacts have been identified.

	� Identify strategies to prevent or minimize cumula-
tive impacts and thresholds identified in the anal-
ysis phase. Strategies might include the implemen-
tation of technological solutions, modifications of 
the activities being assessed, or modifications of 

governance processes. Consult all assessment par-
ticipants; implementation likely to be conducted by 
industry partners alongside government, research, or 
academic partners.

	� Determine any strategies to maximize beneficial 
impacts while minimizing adverse impacts identified 
in the analysis phase.

	� Identify strategies to monitor cumulative impacts 
identified in the analysis phase. Strategies might 
include implementing additional data collection 
and analysis efforts or establishing working groups. 
Consult all assessment participants; implementation 
likely to be conducted by industry partners along-
side government partners, community members, and 
research or academic partners.

	� Determine how management strategies will be mon-
itored and evaluated. Strategies might include the 
establishment of working groups and multisector 
collaboration. Consult all assessment participants; 
implementation likely to be conducted by industry 
partners alongside government partners, community 
members, and research or academic partners.
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APPENDIX C

Special Panel Biographies

Chair, Julia Haggerty, Department of Earth Sciences at 
Montana State University (MSU) 

Dr. Haggerty is an Associate Professor of Geography in the 
Department of Earth Sciences at MSU, where she holds a joint 
appointment in the Montana Institute on Ecosystems. She 
received her bachelor’s degree from Colorado College in liberal 
arts and her doctorate from the University of Colorado in his-
tory. An award-winning teacher, Dr. Haggerty teaches courses 
in human, economic, and energy resource geography at MSU. 
She also leads the Resources and Communities Research Group 
in studying the ways rural communities respond to shifting 
economic and policy trajectories, especially as they involve 
natural resources. Dr. Haggerty has expertise in diverse rural 
geographies, including those shaped by energy development, 
extractive industries, ranching and agriculture, and amenity 
development and conservation. Partnerships and collaboration 
with diverse stakeholders are central to her approach.

Before joining MSU, Dr. Haggerty was a postdoctoral fellow 
at the University of Otago in New Zealand (2005–2007) and a 
policy analyst with Headwaters Economics in Bozeman, Mon-
tana (2008–2013). She speaks frequently to public audiences 
about her research and has served on a number of boards and 
advisory committees operating at local, state, national, and 
international scales.

Nicole Deziel, Department of Environmental Health 
Sciences at Yale School of Public Health

Dr. Deziel is an Associate Professor of Epidemiology in 
the Department of Environmental Health Sciences at the Yale 
School of Public Health and Co-Director of the Yale Center for 
Perinatal, Pediatric, and Environmental Epidemiology. She 
obtained a master’s degree in industrial hygiene and a doc-
torate in environmental health from the Johns Hopkins Bloom-
berg School of Public Health. Her research focuses on applying 
statistical models, biomonitoring techniques, and environ-
mental measurements to provide comprehensive and quan-
titative assessments of exposure to traditional and emerging 
environmental contaminants in population-based studies. Her 
research uses a combination of large, administrative datasets 
and detailed community-focused studies to advance under-
standing of environmental exposures to chemicals, partic-
ularly carcinogens and endocrine disruptors. This research 
also serves to illuminate exposure mechanisms underlying 
associations between environmental chemicals and disease, 
thereby informing more effective policies to reduce expo-
sures and protect public health. Dr. Deziel’s contributions have 
been concentrated in two main areas: (1) exposure and human 
health impacts of unconventional oil and gas development 

(“hydraulic fracturing”) and (2) residential exposure to chem-
icals in common consumer products (e.g., pesticides, flame 
retardants) and cancer risk (particularly thyroid cancer). In 
addition, she considers disproportionate burdens of exposures 
(“environmental justice”) and the combination of environ-
mental and social stressors in the context of her work.

Stephanie Malin, Department of Sociology at Colorado 
State University (CSU)

Dr. Malin is an environmental sociologist specializing in the 
impacts of extraction and energy production on communities. 
Her main interests include environmental justice, environ-
mental health, social movements, and the social and ecolog-
ical effects of capitalist economies. She also examines com-
munities building more distributive and regenerative systems. 
Stephanie serves as a professor in the Department of Soci-
ology at CSU, and she is an adjunct professor with the Colo-
rado School of Public Health. Stephanie cofounded and codi-
rects the Center for Environmental Justice at CSU. She is an 
award-winning teacher of courses on environmental justice, 
water and society, and environmental sociology. 

Dr. Malin is the author of two books, Building Something 
Better: Environmental Crises and the Promise of Commu-
nity Change (2022) with Meghan Elizabeth Kallman and The 
Price of Nuclear Power: Uranium Communities and Envi-
ronmental Justice (2015). She conducts public sociology and 
engaged scholarship, and her work can additionally be found 
in news outlets like The Conversation and High Country News. 
Dr. Malin’s work has been supported by grants from the US 
Department of Energy, US Environmental Protection Agency, 
National Science Foundation, National Institutes of Environ-
mental Health Sciences, the American Sociological Associ-
ation, the Colorado Department of Public Health & Environ-
ment, the Rural Sociological Society’s Early Career Award, and 
the Colorado Water Center. Dr. Malin has also enjoyed serving 
in elected leadership positions for the American Sociological 
Association’s section on Environmental Sociology and the 
International Association for Society and Natural Resources. 
She completed a Mellon Foundation Postdoctoral Fellowship 
at Brown University after earning her doctorate in sociology 
from Utah State University.

Daniel Rossi-Keen, RiverWise

Dr. Rossi-Keen is the executive director of RiverWise. Riv-
erWise exists to organize community power and voice so that 
residents can assert agency over the future of Beaver County, 
Pennsylvania. He has served on the boards of more than 30 
nonprofit and civic organizations, teaches regularly at colleges 
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and universities around the region, and writes a biweekly 
column entitled “Community Matters” for the Beaver County 
Times. Dr. Rossi-Keen holds a doctorate in rhetoric and phi-
losophy of communication from Ohio University, a master’s 
degree in rhetoric and culture from Ohio University, a mas-
ter’s degree in philosophy from Ohio University, a graduate 
certificate in women’s studies from Ohio University, a master’s 
degree in theological studies from Reformed Theological Sem-
inary, and a bachelor’s degree in interdisciplinary studies from 
Grove City College. Dr. Rossi-Keen lives in Aliquippa with his 
wife and four children, who daily motivate him to work toward 
more vibrant communities throughout Beaver County.
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ABBREVIATIONS AND OTHER TERMS

	 ATSDR	 Agency for Toxic Substances and Disease 
Registry

	 BACT	 Best Available Control Technology

	 BLM	 US Bureau of Land Management

	 BTEX	 benzene, toluene, ethylbenzene, and 
xylenes

	 CDPHE	 Colorado Department of Public Health and 
Environment

	 CDC	 US Centers for Disease Control and 
Prevention 

	 CEQ	 Council on Environmental Quality

	 CI	 cumulative impacts

	 COGC	 Colorado Oil and Gas Conservation 
Commission

	 CSU	 Colorado State University

	 ECMC	 Energy and Carbon Management 
Commission

	 EIA	 Energy Information Administration

	 EJC	 Environmental Justice Clinic

	 EPA	 US Environmental Protection Agency

	 HAP	 hazardous air pollutants

	 HFTS	 hydraulic fracture test site

	 IAIA	 International Association for Impact 
Assessment

	 MPCA	 Minnesota Pollution Control Agency

	 MSU	 Montana State University

	 NEPA	 National Environmental Policy Act

	 NMED	 New Mexico Environment Department

	 OGD	 oil and gas development

	 PM	 particulate matter 

	 PMF	 positive matrix factorization

	 TRACER	 Tracking Community Exposures and 
Releases (Collaboration)

	 UOG	 unconventional oil and gas

	 UOGD	 unconventional oil and gas development

	 USGS	 US Geological Survey

	 VOC	 volatile organic compounds

	 WHO	 World Health Organization

	 WSGS	 Wyoming State Geological Survey
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