Noise Emissions in Unconventional Energy Development Leveraging Data for Mitigation Innovation

Noise/Sound Fundamentals

Noise Emissions-Sources

Mitigation

Noise and Sound Fundamentals

PATCHING ASSOCIAT ACOUSTICAL ENGINEERING ES

LTD

What is Sound?

Sound Measurement

How Loud (level)

- Decibels (dB)
- How big the vibrations are

Character (Pitch)

- Frequency
- How many vibrations

Sound Vs. Noise

noise: sound/s that are unwanted

noun

Physics/Engineering

PATCHING ASSOCIATES

dBA vs. dBC Theory

NOISE THERMOMETER

dBA vs. dBC Example

dBA vs. dBC Example

Complex Emissions-Frequency

Complex Emissions-Time

Noise Emissions - Sources

19:30 - J

Noise Emissions - Sources

Noise Emissions – Engine Exhaust

Noise Emissions – Fans

Cooler Side Near Field Sound Map

Noise Emissions – Engine Casing

Residence 680m North

Residence 530m North

Mitigation Opportunities

Noise Mitigation – Philosophy

- Path based : Add control between the source and receiver.
 - Silencers, enclosures, barriers, etc.
 - Add mass and dampening to vibrating components.
- □ Source based : Reduce the sound emitted by the source.
 - Quieter or slower engines, slow fans, electrification.
 - Reduce waste, generally

Noise Mitigation – Portability

Noise Mitigation – Noise Walls

Noise Mitigation – Evolution

Noise Source	SPL (dBA)
Truck 8 Exhaust Muffler Tip	44.0
Truck 8 Exhaust Muffler Shell	43.5
Truck 7 Cooler Exhaust	42.3
Blender West Engine Exhaust Tip	42.1
Truck 8 Cooler Inlet	39.7
Truck 11 Engine Casing	38.5
Sand Conveyor	36.6

Noise Mitigation – Leveraging Data

Exhaust Tip Sound Power

Research Wishlist

Research – Wishlist

- □ Sound and Annoyance: Experience indicates that not all sounds result in uniform annoyance.
 - What other factors are related to annoyance?
 - How do cumulative effects change perception or stakeholder engagement?
 - Leverage new technology to extend past "single values" dBC/dBA into full datasets.
- Environmental Propagation: Variations in the environment cause large sound fluctuations in sound.
 - Existing modeling technology based on dated studies and limited data sets in low frequencies.
 - Large scale control studies using modern technology and full data set (frequency and temporal).
 - Benefit to mitigation planning and policy development.