Measuring and Modeling Air Pollution and Noise Exposure Near Unconventional Oil and Gas Development in Colorado

Jeff Collett, Lisa McKenzie, D. Pan, D, Zimmerle, W. Zhang, Y. Zhou, I-T. Ku, S. Kim, A. Sullivan, J. Pierce, W. Allshouse, S. Levine, J. Duggan, E. Rimelman

colorado school of **public health**

UNIVERSITY OF COLORADO COLORADO STATE UNIVERSITY UNIVERSITY OF NORTHERN COLORADO

Study objectives

- •<u>Objective 1</u>: Identify exposure pathways that connect BTEX and other air pollution emissions from UOGD to nearby communities
 - Recent + new air pollutant measurements in DJ Basin
 - Focus on pre-production activities at large, multi-well pads
- •<u>Objective 2</u>: Sound measurements to characterize the range of exposure to noise from UOGD operations
- •<u>Objective 3</u>: Contextualize community impacts by operation phase; develop TRACER emissions model; stakeholder outreach and engagement

O&G air emissions

Hydraulic fracturing Material being pushed down-hole

Truck traffic/power generation

Drilling
Diesel/NG generators
Drilling mud/shale shakers
Pipe pulling
Truck traffic

Flowback

On-site storage of flowback/produced water

Emptying sand cans

Photo credit: 9News

Air monitoring approach

- CDPHE CAMML
 - Hourly speciated VOCs, CH₄, NO_x, PM_{2.5}
- Weekly integrated VOC canisters
 - 51 speciated VOCs + CH₄
 - 2 near-pad locations + background reference site
- Continuous PID VOC monitors with event-triggered canister samples
 - 2 near-pad locations
- Mobile measurements
 - CH₄ and VOCs

Air monitoring summary

- 3 locations (4 well pads)
 - near Aurora, Brighton, and Windsor
- 3 DJ Basin O&G Operators
- >50 air toxics and other VOCs

VOC concentration gradients around well pads

- Typically modest increases in weekly average concentrations near pad
- Concentrations in transient plumes much higher than weekly averages
 - Plume durations at sensor typically 10s of minutes
- Strong local enhancements of C₈-C₁₀ alkanes (from synthetic Neoflo drilling mud volatilization) during drilling and millout
 - Nonane is an air toxic
 - Potential effects on O₃ formation

HQ = Concentration/Health Guideline Value

Acute and chronic exposure risk

- Chronic exposure Health Guideline Values (HGVs) not exceeded
 - Benzene and n-nonane important contributors
- Benzene levels occasionally exceeded acute exposure HGVs across UOGD operation types
- Consistent with predictions from Holder et al. (2019) Health Risk Analysis sponsored by CDPHE

Exposure vs. distance

- Observationallyconstrained
 AERMOD dispersion
 simulations used to
 examine
 concentration vs.
 distance
- Colorado's 2,000foot presumptive
 setback distance
 helps reduce
 exposure levels

UOGD VOC emission rates

- Utilized extensive VOC observations during development of 6 well pads in Broomfield, Colorado
- Largest average benzene and VOC emissions during drilling and coil tubing/millout operations
 - Modern estimates for drilling mud volatilization, including synthetic Neoflo
 - First VOC emission estimates for coil tubing/millout operations
 - >95% reduction in average VOC and benzene emissions from flowback using closed loop, tankless systems vs. other green completions

User-friendly model to examine local air quality impacts from well pad development and evaluate potential benefits of BMPs

TRACER pre-production model

Key findings – air pollution

- Transient plumes much more concentrated than weekly samples
 - Dominate non-cancer exposure risk
 - Need high time resolution monitoring (~minutes) to capture periods of elevated exposure
 - Colorado's 2000-foot setback distance helps limit exposure levels
- Largest average benzene & VOC emissions during drilling and coil tubing/millout
 - Grid-powered electrified drill rigs reduce emissions but outgassing from drilling mud remains major VOC source
 - Closed-loop, tankless flowback systems reduce average flowback benzene & VOC emissions >95% but we still see large, transient emission plumes during emptying of sand cans
- TRACER pre-production allows users to predict downwind exposures and evaluate benefits associated with implementation of best management practices