

Sources and Reactivity of VOC Emissions from Unconventional Oil and Gas Development I-Ting Ku¹, Da Pan¹*, Weixin Zhang¹, Yong Zhou¹, Emily Lachenmayer¹, Lena M. Low¹, Seongjun Kim¹, Jeffrey L. Collett Jr.¹ 1 Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA * now at School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA Conclusions **Objectives** ✓ Characterize volatile organic compound (VOC) emissions from a synthetic Neoflo drilling mud by laboratory headspace analyses to develop a synthetic drilling mud VOC tracer profile. ✓ Use positive matrix factorization (PMF) to identify characteristics of emissions from drilling mud volatilization in the field. air.

Motivations

Improvements in extraction techniques have significantly supported large increases in U.S. unconventional oil and gas development (UOGD), raising concerns about potential air quality and health impacts.

 Recent studies^{a,b} have measured substantially increased emissions of C_8 - C_{10} alkanes associated with the use of synthetic drilling muds. These heavier n-alkanes are more reactive and can enhance ozone production, while nonane is an air toxic.

Measurements

Longitude (°)

▲ Samples were collected during UOGD pre-production and production activities at three locations (red stars) in the Denver-Julesburg basin.

Analysis Methods

▲ Neoflo-based drilling mud samples were provided by the operator at site 2. A series of headspace VOC analyses of both pure Neoflo drilling fluid and of a recycled drilling mud sample were conducted in our lab at CSU.

▲ The EPA positive matrix factorization (PMF) model was used to apportion sources of VOCs measured near UOGD operations.

▲ The OH reactivity for individual species and the total reactivity were calculated using the equations below.

$$OHR_{VOC_{x}} = k_{OH\&VOC_{x}} \times [VOC_{x}]$$
$$OHR_{total} = \sum (k_{OH\&VOC_{x}} \times [VOC_{x}])$$

References

- a. Ku, I.-T., Zhou, Y., Hecobian, A., Benedict, K., Buck, B., Lachenmayer, E., Terry, B., Frazier, M., Zhang, J., Pan, D., Low, L., Sullivan, A., Collett, J.L., 2024. Air quality impacts from the development of unconventional oil and gas well pads: Air toxics and other volatile organic compounds. Atmospheric Environment 317, os://doi.org/10.1016/i.atmosenv.2023.12018
- .-T., Hecobian, A., Benedict, K. B., Zhou, Y., Buck, B., and Collett, J. L., 2024. Source apportionment of airborne volatile organic compounds near unconventional oil and gas development. Environ. Res. Commun. 6 101013. 10.1088/2515-7620/ad82b2

contributions of 14 key VOC in several drilling emission plume/source samples. (c) Compound profile variation in headspace samples at different temperatures.

1. Fourteen VOCs were identified as major species outgassing from Neoflo-based drilling mud. The fractional composition matrix of these compounds is consistent across lab and field studies confirming this VOC "fingerprint" as a robust way to identify influence of Neoflo-based drilling mud VOC emissions in ambient

2. PMF analyses of VOC samples collected near UOGD operations identified 6 source factors. O&G-related factors contributed an average 48% O&G to OH reactivity across the study.

Six PMF source factors were identified from near-pad VOC analysis at Site 1. An O&G drilling factor (contained high C_8 - C_{10} hydrocarbons) contributed an average of 18% to measured VOCs, highlighting the importance of this drilling mud outgassing source.

Calculated OH reactivities. We see an average 48% O&G contribution to OH reactivity of measured VOCs across the full study. The drilling factor is a large contributor during drilling operations at sites 1 and 2.

Acknowledgements

The study is funded by the HEI Energy Program. We are grateful to three DJ Basin O&G operators who facilitated sampling access and provided operational timeline information.

